Suppr超能文献

相似文献

1
Carbohydrate starvation causes a metabolically active but nonculturable state in Lactococcus lactis.
Appl Environ Microbiol. 2007 Apr;73(8):2498-512. doi: 10.1128/AEM.01832-06. Epub 2007 Feb 9.
2
Identification of the leucine-to-2-methylbutyric acid catabolic pathway of Lactococcus lactis.
Appl Environ Microbiol. 2006 Jun;72(6):4264-73. doi: 10.1128/AEM.00448-06.
4
Genome-wide transcriptional responses to carbon starvation in nongrowing Lactococcus lactis.
Appl Environ Microbiol. 2015 Apr;81(7):2554-61. doi: 10.1128/AEM.03748-14. Epub 2015 Jan 30.
5
Bioenergetic consequences of lactose starvation for continuously cultured Streptococcus cremoris.
J Bacteriol. 1987 Apr;169(4):1460-8. doi: 10.1128/jb.169.4.1460-1468.1987.
6
Bioenergetics and solute transport in lactococci.
Crit Rev Microbiol. 1989;16(6):419-76. doi: 10.3109/10408418909104474.
9
Metabolic adaptation of Lactococcus lactis in the digestive tract: the example of response to lactose.
J Mol Microbiol Biotechnol. 2008;14(1-3):137-44. doi: 10.1159/000106093.
10
Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions.
Biotechnol Appl Biochem. 2008 May;50(Pt 1):25-33. doi: 10.1042/BA20070132.

引用本文的文献

1
Viable but non-cultivable state in oral microbiota: a critical review of an underexplored microbial survival strategy.
Front Cell Infect Microbiol. 2025 Mar 18;15:1533768. doi: 10.3389/fcimb.2025.1533768. eCollection 2025.
6
Synthetic control of living cells by intracellular polymerization.
Trends Biotechnol. 2024 Feb;42(2):241-252. doi: 10.1016/j.tibtech.2023.08.006. Epub 2023 Sep 23.
7
Metabolomics-based response of to desiccation stress and skimmed milk powder storage.
Front Microbiol. 2023 Feb 23;14:1092435. doi: 10.3389/fmicb.2023.1092435. eCollection 2023.
8
The rotation of primary starter culture mixtures results in batch-to-batch variations during Gouda cheese production.
Front Microbiol. 2023 Feb 16;14:1128394. doi: 10.3389/fmicb.2023.1128394. eCollection 2023.

本文引用的文献

1
Comparative genomics of the lactic acid bacteria.
Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15611-6. doi: 10.1073/pnas.0607117103. Epub 2006 Oct 9.
2
Identification of the leucine-to-2-methylbutyric acid catabolic pathway of Lactococcus lactis.
Appl Environ Microbiol. 2006 Jun;72(6):4264-73. doi: 10.1128/AEM.00448-06.
5
DNA Macroarray profiling of Lactococcus lactis subsp. lactis IL1403 gene expression during environmental stresses.
Appl Environ Microbiol. 2004 Nov;70(11):6738-47. doi: 10.1128/AEM.70.11.6738-6747.2004.
6
Fatty acid production from amino acids and alpha-keto acids by Brevibacterium linens BL2.
Appl Environ Microbiol. 2004 Nov;70(11):6385-93. doi: 10.1128/AEM.70.11.6385-6393.2004.
7
Respiration metabolism reduces oxidative and acid stress to improve long-term survival of Lactococcus lactis.
Mol Microbiol. 2004 Sep;53(5):1331-42. doi: 10.1111/j.1365-2958.2004.04217.x.
8
9
Environmental genome shotgun sequencing of the Sargasso Sea.
Science. 2004 Apr 2;304(5667):66-74. doi: 10.1126/science.1093857. Epub 2004 Mar 4.
10
ArgR and AhrC are both required for regulation of arginine metabolism in Lactococcus lactis.
J Bacteriol. 2004 Feb;186(4):1147-57. doi: 10.1128/JB.186.4.1147-1157.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验