Suppr超能文献

医学影像数据的去识别化:保障患者隐私的综合工具。

De-identification of medical imaging data: a comprehensive tool for ensuring patient privacy.

作者信息

Rempe Moritz, Heine Lukas, Seibold Constantin, Hörst Fabian, Kleesiek Jens

机构信息

Institute for AI in Medicine (IKIM), University Hospital Essen, Essen, Germany.

Cancer Research Center Cologne Essen (CCCE), University Medicine Essen, Essen, Germany.

出版信息

Eur Radiol. 2025 Jun 7. doi: 10.1007/s00330-025-11695-x.

Abstract

OBJECTIVES

Medical imaging data employed in research frequently comprises sensitive Protected Health Information (PHI) and Personal Identifiable Information (PII), which is subject to rigorous legal frameworks such as the General Data Protection Regulation (GDPR) or the Health Insurance Portability and Accountability Act (HIPAA). Consequently, these types of data must be de-identified prior to utilization, which presents a significant challenge for many researchers. Given the vast array of medical imaging data, it is necessary to employ a variety of de-identification techniques.

MATERIALS AND METHODS

To facilitate the de-identification process for medical imaging data, we have developed an open-source tool that can be used to de-identify Digital Imaging and Communications in Medicine (DICOM) magnetic resonance images, computer tomography images, whole slide images and magnetic resonance twix raw data. Furthermore, the implementation of a neural network enables the removal of text within the images.

RESULTS

The proposed tool reaches comparable results to current state-of-the-art algorithms at reduced computational time (up to × 265). The tool also manages to fully de-identify image data of various types, such as Neuroimaging Informatics Technology Initiative (NIfTI) or Whole Slide Image (WSI-)DICOMS.

CONCLUSION

The proposed tool automates an elaborate de-identification pipeline for multiple types of inputs, reducing the need for additional tools used for de-identification of imaging data.

KEY POINTS

Question How can researchers effectively de-identify sensitive medical imaging data while complying with legal frameworks to protect patient health information? Findings We developed an open-source tool that automates the de-identification of various medical imaging formats, enhancing the efficiency of de-identification processes. Clinical relevance This tool addresses the critical need for robust and user-friendly de-identification solutions in medical imaging, facilitating data exchange in research while safeguarding patient privacy.

摘要

目标

研究中使用的医学影像数据通常包含敏感的受保护健康信息(PHI)和个人身份信息(PII),这些信息受到严格的法律框架约束,如《通用数据保护条例》(GDPR)或《健康保险流通与责任法案》(HIPAA)。因此,在使用这些数据之前必须进行去识别处理,这对许多研究人员来说是一项重大挑战。鉴于医学影像数据种类繁多,有必要采用多种去识别技术。

材料与方法

为了便于对医学影像数据进行去识别处理,我们开发了一种开源工具,可用于对医学数字成像和通信(DICOM)磁共振图像、计算机断层扫描图像、全切片图像和磁共振twix原始数据进行去识别。此外,神经网络的实现能够去除图像中的文本。

结果

所提出的工具在减少计算时间(最多可达265倍)的情况下,能达到与当前最先进算法相当的结果。该工具还成功地对各种类型的图像数据进行了完全去识别,如神经影像信息学技术倡议(NIfTI)或全切片图像(WSI-)DICOM。

结论

所提出的工具为多种类型的输入自动执行复杂的去识别流程,减少了对用于影像数据去识别的其他工具的需求。

关键点

问题 研究人员如何在遵守保护患者健康信息的法律框架的同时,有效地对敏感医学影像数据进行去识别? 发现 我们开发了一种开源工具,可自动对各种医学影像格式进行去识别,提高了去识别流程的效率。 临床意义 该工具满足了医学影像中对强大且用户友好的去识别解决方案的迫切需求,在保障患者隐私的同时促进了研究中的数据交换。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验