Maass Patrick, Schulz-Gasch Tanja, Stahl Martin, Rarey Matthias
Center for Bioinformatics Hamburg, University of Hamburg, Bundesstrasse 43, D-20146 Hamburg, Germany.
J Chem Inf Model. 2007 Mar-Apr;47(2):390-9. doi: 10.1021/ci060094h. Epub 2007 Feb 17.
Replacing central elements of known active structures is a common procedure to enter new compound classes. Different computational methods have already been developed to help with this task, varying in the description of possible replacements, the query input, and the similarity measure used. In this paper, a novel approach for scaffold replacement and a corresponding software tool, called Recore, is introduced. In contrast to prior methods, our main objective was to combine the following three properties in one tool: to avoid structures with strained conformations, to enable the exploration of large search spaces, and to allow interactive use through short response times. We introduce a new technique employing 3D fragments generated by combinatorial enumeration of cuts. It allows focusing on fragments suitable for scaffold replacement while retaining conformational information of the corresponding crystal structures. Based on this idea, we present an algorithm utilizing a geometric rank searching approach. Given a geometric arrangement of two or three exit vectors and additional pharmacophore features, the algorithm finds fragments fulfilling all these constraints ordered by increasing deviation from the query constraints. For the validation of the approach, three different design scenarios have been used. The results obtained show that our approach is able to propose new valid scaffold topologies.
替换已知活性结构的核心元素是进入新化合物类别的常见方法。已经开发了不同的计算方法来辅助这项任务,这些方法在可能的替换描述、查询输入和所使用的相似性度量方面各不相同。本文介绍了一种用于骨架替换的新方法以及一个名为Recore的相应软件工具。与先前的方法不同,我们的主要目标是在一个工具中结合以下三个特性:避免具有应变构象的结构、能够探索大型搜索空间以及通过短响应时间实现交互式使用。我们引入了一种新技术,该技术采用通过组合切割枚举生成的3D片段。它允许专注于适合骨架替换的片段,同时保留相应晶体结构的构象信息。基于这一想法,我们提出了一种利用几何秩搜索方法的算法。给定两个或三个出口向量的几何排列以及额外的药效团特征,该算法会找到满足所有这些约束的片段,并按与查询约束的偏差增加顺序排列。为了验证该方法,使用了三种不同的设计场景。所获得的结果表明,我们的方法能够提出新的有效骨架拓扑结构。