Suppr超能文献

一种用于鉴定新型片段作为蛋白激酶 CK1δ 活性抑制剂的计算工作流程。

A Computational Workflow for the Identification of Novel Fragments Acting as Inhibitors of the Activity of Protein Kinase CK1δ.

机构信息

Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy.

Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgeri 1, 34127 Trieste, Italy.

出版信息

Int J Mol Sci. 2021 Sep 9;22(18):9741. doi: 10.3390/ijms22189741.

Abstract

Fragment-Based Drug Discovery (FBDD) has become, in recent years, a consolidated approach in the drug discovery process, leading to several drug candidates under investigation in clinical trials and some approved drugs. Among these successful applications of the FBDD approach, kinases represent a class of targets where this strategy has demonstrated its real potential with the approved kinase inhibitor Vemurafenib. In the Kinase family, protein kinase CK1 isoform δ (CK1δ) has become a promising target in the treatment of different neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In the present work, we set up and applied a computational workflow for the identification of putative fragment binders in large virtual databases. To validate the method, the selected compounds were tested in vitro to assess the CK1δ inhibition.

摘要

片段药物发现(FBDD)已成为近年来药物发现过程中的一种成熟方法,为临床试验中的几个候选药物和一些已批准的药物提供了支持。在 FBDD 方法的这些成功应用中,激酶是一个靶点类别,该策略已通过批准的激酶抑制剂vemurafenib 证明了其真正的潜力。在激酶家族中,蛋白激酶 CK1 同工酶 δ(CK1δ)已成为治疗阿尔茨海默病、帕金森病和肌萎缩性侧索硬化症等不同神经退行性疾病的有前途的靶点。在本工作中,我们建立并应用了一种计算工作流程,用于在大型虚拟数据库中识别潜在的片段配体。为了验证该方法,选择的化合物在体外进行了测试,以评估 CK1δ 的抑制作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b39/8471300/07d11cba0369/ijms-22-09741-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验