Suppr超能文献

盐冲击对λimm434溶原菌稳定性的影响。

Effect of salt shock on stability of lambdaimm434 lysogens.

作者信息

Shkilnyj Paul, Koudelka Gerald B

机构信息

Department of Biological Sciences, University at Buffalo, Cooke Hall, North Campus, Buffalo, NY, USA.

出版信息

J Bacteriol. 2007 Apr;189(8):3115-23. doi: 10.1128/JB.01857-06. Epub 2007 Feb 16.

Abstract

The affinities of the bacteriophage 434 repressor for its various binding sites depend on the type and/or concentration of monovalent cations. The ability of bacteriophage 434 repressor to govern the lysis-lysogeny decision depends on the DNA binding activities of the phage's cI repressor protein. We wished to determine whether changes in the intracellular ionic environment influence the lysis-lysogeny decision of the bacteriophage lambda(imm434). Our findings show that the ionic composition within bacterial cells varies with the cation concentration in the growth media. When lambda(imm434) lysogens were grown to mid-log or stationary phase and subsequently incubated in media with increasing monovalent salt concentrations, we observed a salt concentration-dependent increase in the frequency of bacteriophage spontaneous induction. We also found that the frequency of spontaneous induction varied with the type of monovalent cation in the medium. The salt-dependent increase in phage production was unaffected by a recA mutation. These findings indicate that the salt-dependent increase in phage production is not caused by activation of the SOS pathway. Instead, our evidence suggests that salt stress induces this lysogenic bacteriophage by interfering with 434 repressor-DNA interactions. We speculate that the salt-dependent increase in spontaneous induction is due to a direct effect on the repressor's affinity for DNA. Regardless of the precise mechanism, our findings demonstrate that salt stress can regulate the phage lysis-lysogeny switch.

摘要

噬菌体434阻遏物对其各种结合位点的亲和力取决于单价阳离子的类型和/或浓度。噬菌体434阻遏物控制裂解-溶原决定的能力取决于噬菌体cI阻遏蛋白的DNA结合活性。我们希望确定细胞内离子环境的变化是否会影响噬菌体λ(imm434)的裂解-溶原决定。我们的研究结果表明,细菌细胞内的离子组成随生长培养基中阳离子浓度的变化而变化。当λ(imm434)溶原菌生长到对数中期或稳定期,随后在单价盐浓度不断增加的培养基中孵育时,我们观察到噬菌体自发诱导频率随盐浓度的增加而增加。我们还发现,自发诱导的频率随培养基中单价阳离子的类型而变化。噬菌体产生的盐依赖性增加不受recA突变的影响。这些发现表明,噬菌体产生的盐依赖性增加不是由SOS途径的激活引起的。相反,我们的证据表明,盐胁迫通过干扰434阻遏物与DNA的相互作用来诱导这种溶原性噬菌体。我们推测,自发诱导的盐依赖性增加是由于对阻遏物与DNA亲和力的直接影响。无论确切机制如何,我们的研究结果表明盐胁迫可以调节噬菌体的裂解-溶原开关。

相似文献

1
Effect of salt shock on stability of lambdaimm434 lysogens.
J Bacteriol. 2007 Apr;189(8):3115-23. doi: 10.1128/JB.01857-06. Epub 2007 Feb 16.
2
Fine-tuned spatiotemporal dynamics of DNA replication during phage lambda infection.
J Virol. 2024 Nov 19;98(11):e0112824. doi: 10.1128/jvi.01128-24. Epub 2024 Oct 31.
3
Bacteriophage λ RexA and RexB functions assist the transition from lysogeny to lytic growth.
Mol Microbiol. 2021 Oct;116(4):1044-1063. doi: 10.1111/mmi.14792. Epub 2021 Aug 30.
4
Role of the lytic repressor in prophage induction of phage lambda as analyzed by a module-replacement approach.
Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4558-63. doi: 10.1073/pnas.0511117103. Epub 2006 Mar 14.
6
Bacteriophage 434 Hex protein prevents recA-mediated repressor autocleavage.
Viruses. 2013 Jan 9;5(1):111-26. doi: 10.3390/v5010111.
7
Elements in the λ immunity region regulate phage development: beyond the 'Genetic Switch'.
Mol Microbiol. 2019 Dec;112(6):1798-1813. doi: 10.1111/mmi.14394. Epub 2019 Oct 8.
8
Yet another way that phage λ manipulates its Escherichia coli host: λrexB is involved in the lysogenic-lytic switch.
Mol Microbiol. 2015 May;96(4):689-93. doi: 10.1111/mmi.12969. Epub 2015 Mar 16.
9
On the role of Cro in lambda prophage induction.
Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4465-9. doi: 10.1073/pnas.0409839102. Epub 2005 Feb 23.
10
Excess production of phage lambda delayed early proteins under conditions supporting high Escherichia coli growth rates.
Microbiology (Reading). 1998 Aug;144 ( Pt 8):2217-2224. doi: 10.1099/00221287-144-8-2217.

引用本文的文献

1
Temperate phage-antibiotic synergy across antibiotic classes reveals new mechanism for preventing lysogeny.
mBio. 2024 Jun 12;15(6):e0050424. doi: 10.1128/mbio.00504-24. Epub 2024 May 17.
3
Induction mechanisms and strategies underlying interprophage competition during polylysogeny.
PLoS Pathog. 2023 May 18;19(5):e1011363. doi: 10.1371/journal.ppat.1011363. eCollection 2023 May.
4
Characterization of a New Temperate Phage vB_EcoP_ZX5 and Its Regulatory Protein.
Pathogens. 2022 Nov 30;11(12):1445. doi: 10.3390/pathogens11121445.
5
Reduced bacterial mortality and enhanced viral productivity during sinking in the ocean.
ISME J. 2022 Jun;16(6):1668-1675. doi: 10.1038/s41396-022-01224-9. Epub 2022 Apr 1.
6
Uneven host cell growth causes lysogenic virus induction in the Baltic Sea.
PLoS One. 2019 Aug 6;14(8):e0220716. doi: 10.1371/journal.pone.0220716. eCollection 2019.
7
Non-pathogenic Enhance Stx2a Production of O157:H7 Through Both -Dependent and Independent Mechanisms.
Front Microbiol. 2018 Jun 15;9:1325. doi: 10.3389/fmicb.2018.01325. eCollection 2018.
9
Cheating, facilitation and cooperation regulate the effectiveness of phage-encoded exotoxins as antipredator molecules.
Microbiologyopen. 2019 Feb;8(2):e00636. doi: 10.1002/mbo3.636. Epub 2018 Apr 19.
10
Mixing alters the lytic activity of viruses in the dark ocean.
Ecology. 2018 Mar;99(3):700-713. doi: 10.1002/ecy.2135. Epub 2018 Feb 6.

本文引用的文献

1
Cation Transport in Escherichia coli: V. Regulation of cation content.
J Gen Physiol. 1965 Nov 1;49(2):221-34. doi: 10.1085/jgp.49.2.221.
2
Fluorescence measurement of intracellular sodium concentration in single Escherichia coli cells.
Biophys J. 2006 Jan 1;90(1):357-65. doi: 10.1529/biophysj.105.071332. Epub 2005 Oct 14.
3
Monovalent cations regulate DNA sequence recognition by 434 repressor.
J Mol Biol. 2004 Jul 9;340(3):445-57. doi: 10.1016/j.jmb.2004.04.065.
4
Characterizing spontaneous induction of Stx encoding phages using a selectable reporter system.
Mol Microbiol. 2004 Mar;51(6):1691-704. doi: 10.1111/j.1365-2958.2003.03934.x.
5
The roles and regulation of potassium in bacteria.
Prog Nucleic Acid Res Mol Biol. 2003;75:293-320. doi: 10.1016/s0079-6603(03)75008-9.
6
CATION TRANSPORT IN ESCHERICHIA COLI. IV. KINETICS OF NET K UPTAKE.
J Gen Physiol. 1963 Nov;47(2):329-46. doi: 10.1085/jgp.47.2.329.
7
Cation transport in Escherichia coli. III. Potassium fluxes in the steadystate.
J Gen Physiol. 1962 Nov;46(2):343-53. doi: 10.1085/jgp.46.2.343.
8
Cation transport in Escherichia coli. II. Intracellular chloride concentration.
J Gen Physiol. 1962 Sep;46(1):159-66. doi: 10.1085/jgp.46.1.159.
9
Halophilic adaptation of protein-DNA interactions.
Biochem Soc Trans. 2003 Jun;31(Pt 3):677-80. doi: 10.1042/bst0310677.
10
The role of the minor groove substituents in indirect readout of DNA sequence by 434 repressor.
J Biol Chem. 2003 Apr 11;278(15):12955-60. doi: 10.1074/jbc.M212667200. Epub 2003 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验