Thiagalingam Aravinda, D'Avila Andre, McPherson Christina, Malchano Zachary, Ruskin Jeremy, Reddy Vivek Y
Department of Cardiac Electrophysiology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
J Cardiovasc Electrophysiol. 2007 Mar;18(3):318-25. doi: 10.1111/j.1540-8167.2006.00745.x.
Irrigated-tip catheter ablation allows larger ablation lesions to be created, but also decreases catheter temperature monitoring accuracy. It is unclear which parameters should be monitored to optimize efficacy and safety during irrigated-tip ablation.
Freshly excised hearts from eight male pigs were perfused and superfused using oxygenated swine blood in an ex vivo model. Ablations were performed for 1 minute using one of five different ablation protocols: (1) Temperature Control (42 degrees C 40 W), (2) Fixed Power 20 W, (3) Fixed Power 30 W, (4) Impedance Control (target 10 ohm impedance drop), and (5) Impedance Control (target 20 ohm drop). All ablations were performed with a perpendicular orientation of the catheter to the endocardial surface. Ablation lesions depth was significantly lower in the temperature control group (5.0 +/- 1.7 mm) compared with the fixed power ablation groups (6.5 +/- 1.0 mm for Power 20 W, 6.6 +/- 1.2 mm for Power 30 W). Impedance-controlled ablation created lesions intermediate in depth between fixed power and temperature controlled (6.0 +/- 1.6 for Impedance 10 ohms and 6.2 +/- 1.4 mm for Impedance 20 ohms groups). There was a significantly greater incidence of pops and thrombus formation in the Power 20 W (9/14), Power 30 W (10/14), and Impedance 20 ohms (10/16) groups than the Temperature Control (1/16) and Impedance control 10 ohms (2/16) groups.
Temperature control improved the safety profile during irrigated-tip ablation in comparison with fixed-power ablations, but resulted in significantly smaller lesions. Impedance-controlled ablation lesions (target 10 ohm drop) created lesions of comparable size to fixed-power ablations with a significantly better safety profile.
灌注头导管消融能够形成更大的消融灶,但会降低导管温度监测的准确性。目前尚不清楚在灌注头消融过程中应监测哪些参数以优化疗效和安全性。
在离体模型中,使用含氧猪血对八只雄性猪刚切除的心脏进行灌注和表面灌注。采用五种不同的消融方案之一进行1分钟的消融:(1)温度控制(42摄氏度,40瓦),(2)固定功率20瓦,(3)固定功率30瓦,(4)阻抗控制(目标阻抗下降10欧姆),以及(5)阻抗控制(目标阻抗下降20欧姆)。所有消融均使导管垂直于心内膜表面进行。与固定功率消融组相比,温度控制组的消融灶深度显著更低(5.0±1.7毫米),固定功率20瓦组为6.5±1.0毫米,固定功率30瓦组为6.6±1.2毫米。阻抗控制消融形成的病灶深度介于固定功率和温度控制之间(阻抗10欧姆组为6.0±1.6毫米,阻抗20欧姆组为6.2±1.4毫米)。与温度控制组(1/16)和阻抗控制10欧姆组(2/16)相比,20瓦功率组(9/14)、30瓦功率组(10/14)和阻抗20欧姆组(10/16)出现爆裂和血栓形成的发生率显著更高。
与固定功率消融相比,温度控制在灌注头消融过程中改善了安全性,但导致的病灶明显更小。阻抗控制消融(目标阻抗下降10欧姆)形成的病灶大小与固定功率消融相当,安全性显著更好。