School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan.
Université Côte d'Azur, INPHYNI, CNRS UMR7010, Avenue Joseph Vallot, 06108 Nice, France.
Biosensors (Basel). 2022 May 18;12(5):352. doi: 10.3390/bios12050352.
In this work, we report the design of an optical fiber distributed sensing network for the 2-dimensional (2D) in situ thermal mapping of advanced methods for radiofrequency thermal ablation. The sensing system is based on six high-scattering MgO-doped optical fibers, interleaved by a scattering-level spatial multiplexing approach that allows simultaneous detection of each fiber location, in a 40 × 20 mm grid (7.8 mm pixel size). Radiofrequency ablation (RFA) was performed on bovine phantom, using a pristine approach and methods mediated by agarose and gold nanoparticles in order to enhance the ablation properties. The 2D sensors allow the detection of spatiotemporal patterns, evaluating the heating properties and investigating the repeatability. We observe that agarose-based ablation yields the widest ablated area in the best-case scenario, while gold nanoparticles-mediated ablation provides the best trade-off between the ablated area (53.0-65.1 mm, 61.5 mm mean value) and repeatability.
在这项工作中,我们报告了一种光纤分布式传感网络的设计,用于射频热消融的先进方法的二维(2D)原位热映射。传感系统基于六根高散射 MgO 掺杂光纤,通过散射级空间复用方法交错排列,允许同时检测每个光纤位置,在 40×20 毫米的网格(7.8 毫米像素大小)中。使用原始方法和琼脂糖和金纳米粒子介导的方法对牛体模型进行射频消融(RFA),以增强消融性能。二维传感器允许检测时空模式,评估加热特性并研究重复性。我们观察到,在最佳情况下,基于琼脂糖的消融产生的消融面积最宽,而金纳米粒子介导的消融在消融面积(53.0-65.1 毫米,平均值 61.5 毫米)和重复性之间提供了最佳的折衷。