Suppr超能文献

长期训练后人类麻痹肌肉的数学模型

Mathematical models of human paralyzed muscle after long-term training.

作者信息

Law L A Frey, Shields R K

机构信息

Graduate Program in Physical Therapy & Rehabilitation Science, The University of Iowa, 1-252 Medical Education Building, Iowa City, IA 52242-1190, USA.

出版信息

J Biomech. 2007;40(12):2587-95. doi: 10.1016/j.jbiomech.2006.12.015. Epub 2007 Feb 20.

Abstract

Spinal cord injury (SCI) results in major musculoskeletal adaptations, including muscle atrophy, faster contractile properties, increased fatigability, and bone loss. The use of functional electrical stimulation (FES) provides a method to prevent paralyzed muscle adaptations in order to sustain force-generating capacity. Mathematical muscle models may be able to predict optimal activation strategies during FES, however muscle properties further adapt with long-term training. The purpose of this study was to compare the accuracy of three muscle models, one linear and two nonlinear, for predicting paralyzed soleus muscle force after exposure to long-term FES training. Further, we contrasted the findings between the trained and untrained limbs. The three models' parameters were best fit to a single force train in the trained soleus muscle (N=4). Nine additional force trains (test trains) were predicted for each subject using the developed models. Model errors between predicted and experimental force trains were determined, including specific muscle force properties. The mean overall error was greatest for the linear model (15.8%) and least for the nonlinear Hill Huxley type model (7.8%). No significant error differences were observed between the trained versus untrained limbs, although model parameter values were significantly altered with training. This study confirmed that nonlinear models most accurately predict both trained and untrained paralyzed muscle force properties. Moreover, the optimized model parameter values were responsive to the relative physiological state of the paralyzed muscle (trained versus untrained). These findings are relevant for the design and control of neuro-prosthetic devices for those with SCI.

摘要

脊髓损伤(SCI)会导致主要的肌肉骨骼适应性变化,包括肌肉萎缩、收缩特性加快、易疲劳性增加以及骨质流失。功能性电刺激(FES)的使用提供了一种防止瘫痪肌肉适应性变化以维持力量生成能力的方法。数学肌肉模型或许能够预测FES期间的最佳激活策略,然而肌肉特性会随着长期训练进一步适应。本研究的目的是比较三种肌肉模型(一种线性模型和两种非线性模型)在预测长期FES训练后瘫痪比目鱼肌力量方面的准确性。此外,我们对比了训练肢体和未训练肢体之间的结果。将三种模型的参数与训练后的比目鱼肌中的单个力序列(N = 4)进行最佳拟合。使用开发的模型为每个受试者预测另外九个力序列(测试序列)。确定预测的和实验性力序列之间的模型误差,包括特定的肌肉力量特性。线性模型的平均总体误差最大(15.8%),非线性希尔 - 赫胥黎型模型的平均总体误差最小(7.8%)。尽管模型参数值随训练有显著改变,但在训练肢体和未训练肢体之间未观察到显著的误差差异。本研究证实,非线性模型能最准确地预测训练和未训练的瘫痪肌肉力量特性。此外,优化后的模型参数值对瘫痪肌肉的相对生理状态(训练与未训练)有响应。这些发现与为脊髓损伤患者设计和控制神经假体装置相关。

相似文献

1
Mathematical models of human paralyzed muscle after long-term training.长期训练后人类麻痹肌肉的数学模型
J Biomech. 2007;40(12):2587-95. doi: 10.1016/j.jbiomech.2006.12.015. Epub 2007 Feb 20.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验