Suppr超能文献

基于片段的药物发现策略及其在 SARS-CoV-2 主蛋白酶抑制剂设计中的应用。

Fragment-based Drug Discovery Strategy and its Application to the Design of SARS-CoV-2 Main Protease Inhibitor.

机构信息

Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China.

College of Pharmacy, Inner Mongolia Medical University, Hohhot, China.

出版信息

Curr Med Chem. 2024;31(38):6204-6226. doi: 10.2174/0109298673294251240229070740.

Abstract

Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) emerged at the end of 2019, causing a highly infectious and pathogenic disease known as 2019 coronavirus disease. This disease poses a serious threat to human health and public safety. The SARS-CoV-2 main protease (M) is a highly sought-after target for developing drugs against COVID-19 due to its exceptional specificity. Its crystal structure has been extensively documented. Numerous strategies have been employed in the investigation of M inhibitors. This paper is primarily concerned with Fragment-based Drug Discovery (FBDD), which has emerged as an effective approach to drug design in recent times. Here, we summarize the research on the approach of FBDD and its application in developing inhibitors for SARS-CoV-2 M.

摘要

严重急性呼吸系统综合症冠状病毒 2 型(SARS-CoV-2)于 2019 年末出现,引发了一种高度传染性和致病性疾病,即 2019 年冠状病毒病。这种疾病对人类健康和公共安全构成了严重威胁。SARS-CoV-2 主蛋白酶(M)是开发针对 COVID-19 药物的高度追求目标,因为它具有极高的特异性。其晶体结构已得到广泛记载。人们已经采用了许多策略来研究 M 抑制剂。本文主要关注基于片段的药物发现(FBDD),这是近年来药物设计的一种有效方法。在这里,我们总结了 FBDD 方法的研究及其在开发 SARS-CoV-2 M 抑制剂中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验