Suppr超能文献

DPubChem:一个用于定量构效关系建模和高通量虚拟筛选的网络工具。

DPubChem: a web tool for QSAR modeling and high-throughput virtual screening.

机构信息

Institute of Parasitology, McGill University, Montreal, QC, H9X 3V9, Canada.

Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.

出版信息

Sci Rep. 2018 Jun 14;8(1):9110. doi: 10.1038/s41598-018-27495-x.

Abstract

High-throughput screening (HTS) performs the experimental testing of a large number of chemical compounds aiming to identify those active in the considered assay. Alternatively, faster and cheaper methods of large-scale virtual screening are performed computationally through quantitative structure-activity relationship (QSAR) models. However, the vast amount of available HTS heterogeneous data and the imbalanced ratio of active to inactive compounds in an assay make this a challenging problem. Although different QSAR models have been proposed, they have certain limitations, e.g., high false positive rates, complicated user interface, and limited utilization options. Therefore, we developed DPubChem, a novel web tool for deriving QSAR models that implement the state-of-the-art machine-learning techniques to enhance the precision of the models and enable efficient analyses of experiments from PubChem BioAssay database. DPubChem also has a simple interface that provides various options to users. DPubChem predicted active compounds for 300 datasets with an average geometric mean and F score of 76.68% and 76.53%, respectively. Furthermore, DPubChem builds interaction networks that highlight novel predicted links between chemical compounds and biological assays. Using such a network, DPubChem successfully suggested a novel drug for the Niemann-Pick type C disease. DPubChem is freely available at www.cbrc.kaust.edu.sa/dpubchem .

摘要

高通量筛选 (HTS) 对大量化合物进行实验测试,旨在鉴定在特定测定中具有活性的化合物。或者,可以通过定量构效关系 (QSAR) 模型在计算上进行更快、更便宜的大规模虚拟筛选方法。然而,可用的高通量筛选异构数据量巨大,以及测定中活性与非活性化合物的比例不平衡,这使得这成为一个具有挑战性的问题。尽管已经提出了不同的 QSAR 模型,但它们存在一定的局限性,例如,高假阳性率、复杂的用户界面和有限的利用选项。因此,我们开发了 DPubChem,这是一种用于推导 QSAR 模型的新型网络工具,它实现了最先进的机器学习技术,以提高模型的精度,并能够有效地分析来自 PubChem 生物测定数据库的实验。DPubChem 还具有简单的界面,为用户提供了各种选项。DPubChem 对 300 个数据集进行了预测,平均几何平均值和 F 分数分别为 76.68%和 76.53%。此外,DPubChem 构建了交互网络,突出了化合物和生物测定之间的新预测联系。通过使用这样的网络,DPubChem 成功地为尼曼-皮克 C 型疾病推荐了一种新型药物。DPubChem 可在 www.cbrc.kaust.edu.sa/dpubchem 免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/6002400/3aa2234d9479/41598_2018_27495_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验