Lee Hakho, Liu Yong, Ham Donhee, Westervelt Robert M
Department of Physics, Harvard University, Cambridge, MA 02138, USA.
Lab Chip. 2007 Mar;7(3):331-7. doi: 10.1039/b700373k. Epub 2007 Feb 1.
Manipulation of biological cells using a CMOS/microfluidic hybrid system is demonstrated. The hybrid system starts with a custom-designed CMOS (complementary metal-oxide semiconductor) chip fabricated in a semiconductor foundry. A microfluidic channel is post-fabricated on top of the CMOS chip to provide biocompatible environments. The motion of individual biological cells that are tagged with magnetic beads is directly controlled by the CMOS chip that generates microscopic magnetic field patterns using an on-chip array of micro-electromagnets. Furthermore, the CMOS chip allows high-speed and programmable reconfiguration of the magnetic fields, substantially increasing the manipulation capability of the hybrid system. Extending from previous work that verified the concept of the hybrid system, this paper reports a set of manipulation experiments with biological cells, which further confirms the advantage of the hybrid approach. To enhance the biocompatibility of the system, the microfluidic channel is redesigned and the temperature of the device is monitored by on-chip sensors. Combining microelectronics and microfluidics, the CMOS/microfluidic hybrid system presents a new model for a cell manipulation platform in biological and biomedical applications.
展示了使用CMOS/微流体混合系统对生物细胞进行操作。该混合系统始于在半导体代工厂制造的定制设计CMOS(互补金属氧化物半导体)芯片。在CMOS芯片顶部后加工一个微流体通道,以提供生物相容的环境。用磁珠标记的单个生物细胞的运动由CMOS芯片直接控制,该芯片使用片上微电磁体阵列产生微观磁场模式。此外,CMOS芯片允许对磁场进行高速和可编程的重新配置,大大提高了混合系统的操作能力。在先前验证混合系统概念的工作基础上进行扩展,本文报告了一组对生物细胞的操作实验,进一步证实了混合方法的优势。为提高系统的生物相容性,重新设计了微流体通道,并通过片上传感器监测设备的温度。CMOS/微流体混合系统将微电子学和微流体学相结合,为生物和生物医学应用中的细胞操作平台提供了一种新模型。