文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于神经元细胞应用的氧化铁纳米颗粒:摄取研究与磁操控

Iron oxide nanoparticles for neuronal cell applications: uptake study and magnetic manipulations.

作者信息

Marcus Michal, Karni Moshe, Baranes Koby, Levy Itay, Alon Noa, Margel Shlomo, Shefi Orit

机构信息

Neuro-engineering lab, Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel.

Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan, Israel.

出版信息

J Nanobiotechnology. 2016 May 14;14(1):37. doi: 10.1186/s12951-016-0190-0.


DOI:10.1186/s12951-016-0190-0
PMID:27179923
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4867999/
Abstract

BACKGROUND: The ability to direct and manipulate neuronal cells has important potential in therapeutics and neural network studies. An emerging approach for remotely guiding cells is by incorporating magnetic nanoparticles (MNPs) into cells and transferring the cells into magnetic sensitive units. Recent developments offer exciting possibilities of magnetic manipulations of MNPs-loaded cells by external magnetic fields. In the present study, we evaluated and characterized uptake properties for optimal loading of cells by MNPs. We examined the interactions between MNPs of different cores and coatings, with primary neurons and neuron-like cells. RESULTS: We found that uncoated-maghemite iron oxide nanoparticles maximally interact and penetrate into cells with no cytotoxic effect. We observed that the cellular uptake of the MNPs depends on the time of incubation and the concentration of nanoparticles in the medium. The morphology patterns of the neuronal cells were not affected by MNPs uptake and neurons remained electrically active. We theoretically modeled magnetic fluxes and demonstrated experimentally the response of MNP-loaded cells to the magnetic fields affecting cell motility. Furthermore, we successfully directed neurite growth orientation along regeneration. CONCLUSIONS: Applying mechanical forces via magnetic mediators is a useful approach for biomedical applications. We have examined several types of MNPs and studied the uptake behavior optimized for magnetic neuronal manipulations.

摘要

背景:引导和操控神经元细胞的能力在治疗学和神经网络研究中具有重要潜力。一种新兴的远程引导细胞的方法是将磁性纳米颗粒(MNPs)融入细胞,并将细胞转移到磁敏单元中。最近的进展为通过外部磁场对负载MNPs的细胞进行磁性操控提供了令人兴奋的可能性。在本研究中,我们评估并表征了MNPs对细胞的最佳负载摄取特性。我们研究了不同核心和涂层的MNPs与原代神经元和神经元样细胞之间的相互作用。 结果:我们发现未包覆的磁赤铁矿氧化铁纳米颗粒能最大程度地与细胞相互作用并穿透细胞,且无细胞毒性作用。我们观察到MNPs的细胞摄取取决于孵育时间和培养基中纳米颗粒的浓度。神经元细胞的形态模式不受MNPs摄取的影响,且神经元保持电活性。我们对磁通量进行了理论建模,并通过实验证明了负载MNPs的细胞对影响细胞运动的磁场的反应。此外,我们成功地引导了神经突沿着再生方向生长。 结论:通过磁性介质施加机械力是生物医学应用的一种有用方法。我们研究了几种类型的MNPs,并研究了针对磁性神经元操控优化的摄取行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/4867999/8d290057fa8b/12951_2016_190_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/4867999/8f63153ffd91/12951_2016_190_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/4867999/77773ebd6890/12951_2016_190_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/4867999/05389d2b3e9f/12951_2016_190_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/4867999/2542886ed904/12951_2016_190_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/4867999/77ee9147e5cf/12951_2016_190_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/4867999/660bdd1c0e64/12951_2016_190_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/4867999/ff6a96972b00/12951_2016_190_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/4867999/8d290057fa8b/12951_2016_190_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/4867999/8f63153ffd91/12951_2016_190_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/4867999/77773ebd6890/12951_2016_190_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/4867999/05389d2b3e9f/12951_2016_190_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/4867999/2542886ed904/12951_2016_190_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/4867999/77ee9147e5cf/12951_2016_190_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/4867999/660bdd1c0e64/12951_2016_190_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/4867999/ff6a96972b00/12951_2016_190_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/4867999/8d290057fa8b/12951_2016_190_Fig8_HTML.jpg

相似文献

[1]
Iron oxide nanoparticles for neuronal cell applications: uptake study and magnetic manipulations.

J Nanobiotechnology. 2016-5-14

[2]
Growth and elongation of axons through mechanical tension mediated by fluorescent-magnetic bifunctional FeO·Rhodamine 6G@PDA superparticles.

J Nanobiotechnology. 2020-4-25

[3]
The orientation of the neuronal growth process can be directed via magnetic nanoparticles under an applied magnetic field.

Nanomedicine. 2014-1-7

[4]
Magnetic nanoparticles in primary neural cell cultures are mainly taken up by microglia.

BMC Neurosci. 2012-3-22

[5]
Poly-l-lysine-coated magnetic nanoparticles as intracellular actuators for neural guidance.

Int J Nanomedicine. 2012-6-25

[6]
Surface functionalized magnetic nanoparticles shift cell behavior with on/off magnetic fields.

J Cell Physiol. 2018-2

[7]
Amorphous silica coatings on magnetic nanoparticles enhance stability and reduce toxicity to in vitro BEAS-2B cells.

Inhal Toxicol. 2011-8

[8]
Small versus Large Iron Oxide Magnetic Nanoparticles: Hyperthermia and Cell Uptake Properties.

Molecules. 2016-10-13

[9]
Effect of surface charge and agglomerate degree of magnetic iron oxide nanoparticles on KB cellular uptake in vitro.

Colloids Surf B Biointerfaces. 2009-10-15

[10]
Nanotoxicity of iron oxide nanoparticle internalization in growing neurons.

Biomaterials. 2007-6

引用本文的文献

[1]
Applications and Efficacy of Iron Oxide Nanoparticles in the Treatment of Brain Tumors.

Pharmaceutics. 2025-4-9

[2]
Magnetic Ionogel and Its Applications.

Gels. 2025-3-21

[3]
Magnetic Polymeric Conduits in Biomedical Applications.

Micromachines (Basel). 2025-1-31

[4]
Synergic effects of core-shell nanospheres and magnetic field for sciatic nerve regeneration in decellularized artery conduits with Schwann cells.

J Nanobiotechnology. 2024-12-19

[5]
Nanomagnetic Guidance Shapes the Structure-Function Relationship of Developing Cortical Networks.

Nano Lett. 2024-10-30

[6]
Stereoselective Interactions of Chiral Polyurea Nanocapsules with Albumins.

ACS Appl Mater Interfaces. 2024-10-30

[7]
Fabrication and Applications of Magnetic Polymer Composites for Soft Robotics.

Micromachines (Basel). 2023-11-29

[8]
Iron oxide nanoparticles trigger endoplasmic reticulum damage in steatotic hepatic cells.

Nanoscale Adv. 2023-7-18

[9]
How Magnetic Composites are Effective Anticancer Therapeutics? A Comprehensive Review of the Literature.

Int J Nanomedicine. 2023

[10]
Influence of SPIO labelling on the function of BMSCs in chemokine receptors expression and chemotaxis.

PeerJ. 2023

本文引用的文献

[1]
Magnetic Nanoparticles Cross the Blood-Brain Barrier: When Physics Rises to a Challenge.

Nanomaterials (Basel). 2015-12-11

[2]
Gold Nanoparticle-Decorated Scaffolds Promote Neuronal Differentiation and Maturation.

Nano Lett. 2015-12-19

[3]
Advanced cell therapies: targeting, tracking and actuation of cells with magnetic particles.

Regen Med. 2015

[4]
Magnetically Targeted Stem Cell Delivery for Regenerative Medicine.

J Funct Biomater. 2015-6-30

[5]
Nanometric agents in the service of neuroscience: Manipulation of neuronal growth and activity using nanoparticles.

Nanomedicine. 2015-8

[6]
Magnetic micro-device for manipulating PC12 cell migration and organization.

Lab Chip. 2015-5-7

[7]
NGF-conjugated iron oxide nanoparticles promote differentiation and outgrowth of PC12 cells.

Nanoscale. 2015-1-21

[8]
The role of neurotrophic factors conjugated to iron oxide nanoparticles in peripheral nerve regeneration: in vitro studies.

Biomed Res Int. 2014

[9]
Assessing the efficacy of nano- and micro-sized magnetic particles as contrast agents for MRI cell tracking.

PLoS One. 2014-6-24

[10]
In vitro angiogenic performance and in vivo brain targeting of magnetized endothelial progenitor cells for neurorepair therapies.

Nanomedicine. 2013-6-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索