Scherz-Shouval Ruth, Shvets Elena, Fass Ephraim, Shorer Hagai, Gil Lidor, Elazar Zvulun
Department of Biological Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel.
EMBO J. 2007 Apr 4;26(7):1749-60. doi: 10.1038/sj.emboj.7601623. Epub 2007 Mar 8.
Autophagy is a major catabolic pathway by which eukaryotic cells degrade and recycle macromolecules and organelles. This pathway is activated under environmental stress conditions, during development and in various pathological situations. In this study, we describe the role of reactive oxygen species (ROS) as signaling molecules in starvation-induced autophagy. We show that starvation stimulates formation of ROS, specifically H(2)O(2). These oxidative conditions are essential for autophagy, as treatment with antioxidative agents abolished the formation of autophagosomes and the consequent degradation of proteins. Furthermore, we identify the cysteine protease HsAtg4 as a direct target for oxidation by H(2)O(2), and specify a cysteine residue located near the HsAtg4 catalytic site as a critical for this regulation. Expression of this regulatory mutant prevented the formation of autophagosomes in cells, thus providing a molecular mechanism for redox regulation of the autophagic process.
自噬是真核细胞降解和循环利用大分子及细胞器的主要分解代谢途径。该途径在环境应激条件下、发育过程中以及各种病理情况下被激活。在本研究中,我们描述了活性氧(ROS)作为信号分子在饥饿诱导的自噬中的作用。我们发现饥饿刺激ROS的形成,特别是H₂O₂。这些氧化条件对于自噬至关重要,因为用抗氧化剂处理可消除自噬体的形成以及随之而来的蛋白质降解。此外,我们确定半胱氨酸蛋白酶HsAtg4是H₂O₂氧化的直接靶点,并指定位于HsAtg4催化位点附近的一个半胱氨酸残基对这种调节至关重要。这种调节性突变体的表达阻止了细胞中自噬体的形成,从而为自噬过程的氧化还原调节提供了一种分子机制。