Suppr超能文献

用于形状表示的对数几率图。

Logarithm odds maps for shape representation.

作者信息

Pohl Kilian M, Fisher John, Shenton Martha, McCarley Robert W, Grimson W Eric L, Kikinis Ron, Wells William M

机构信息

Surgical Planning Laboratory, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.

出版信息

Med Image Comput Comput Assist Interv. 2006;9(Pt 2):955-63. doi: 10.1007/11866763_117.

Abstract

The concept of the Logarithm of the Odds (LogOdds) is frequently used in areas such as artificial neural networks, economics, and biology. Here, we utilize LogOdds for a shape representation that demonstrates desirable properties for medical imaging. For example, the representation encodes the shape of an anatomical structure as well as the variations within that structure. These variations are embedded in a vector space that relates to a probabilistic model. We apply our representation to a voxel based segmentation algorithm. We do so by embedding the manifold of Signed Distance Maps (SDM) into the linear space of LogOdds. The LogOdds variant is superior to the SDM model in an experiment segmenting 20 subjects into subcortical structures. We also use LogOdds in the non-convex interpolation between space conditioned distributions. We apply this model to a longitudinal schizophrenia study using quadratic splines. The resulting time-continuous simulation of the schizophrenic aging process has a higher accuracy then a model based on convex interpolation.

摘要

对数几率(LogOdds)的概念在人工神经网络、经济学和生物学等领域经常被使用。在此,我们将LogOdds用于一种形状表示,该表示展示了医学成像所需的特性。例如,这种表示对解剖结构的形状以及该结构内的变化进行编码。这些变化被嵌入到与概率模型相关的向量空间中。我们将我们的表示应用于基于体素的分割算法。我们通过将符号距离映射(SDM)的流形嵌入到LogOdds的线性空间中来实现这一点。在将20名受试者分割为皮质下结构的实验中,LogOdds变体优于SDM模型。我们还将LogOdds用于空间条件分布之间的非凸插值。我们将此模型应用于使用二次样条的纵向精神分裂症研究。由此产生的精神分裂症衰老过程的时间连续模拟比基于凸插值的模型具有更高的准确性。

相似文献

1
Logarithm odds maps for shape representation.用于形状表示的对数几率图。
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):955-63. doi: 10.1007/11866763_117.
2
Using the logarithm of odds to define a vector space on probabilistic atlases.使用对数优势在概率图谱上定义向量空间。
Med Image Anal. 2007 Oct;11(5):465-77. doi: 10.1016/j.media.2007.06.003. Epub 2007 Jun 22.
5
Shape-driven 3D segmentation using spherical wavelets.使用球面小波的形状驱动3D分割
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):66-74. doi: 10.1007/11866565_9.
8
A log-Euclidean framework for statistics on diffeomorphisms.一种用于微分同胚统计的对数欧几里得框架。
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):924-31. doi: 10.1007/11866565_113.

引用本文的文献

2
An Optimal, Generative Model for Estimating Multi-Label Probabilistic Maps.用于估计多标签概率图谱的最优生成模型。
IEEE Trans Med Imaging. 2020 Jul;39(7):2316-2326. doi: 10.1109/TMI.2020.2968917. Epub 2020 Jan 23.
6
Probabilistic liver atlas construction.概率性肝脏图谱构建
Biomed Eng Online. 2017 Jan 13;16(1):15. doi: 10.1186/s12938-016-0305-8.
8
Abdomen and spinal cord segmentation with augmented active shape models.使用增强主动形状模型进行腹部和脊髓分割。
J Med Imaging (Bellingham). 2016 Jul;3(3):036002. doi: 10.1117/1.JMI.3.3.036002. Epub 2016 Aug 26.
9
Contour-Driven Atlas-Based Segmentation.基于轮廓驱动图谱的分割
IEEE Trans Med Imaging. 2015 Dec;34(12):2492-505. doi: 10.1109/TMI.2015.2442753. Epub 2015 Jun 9.
10
A Generative Model for Probabilistic Label Fusion of Multimodal Data.一种用于多模态数据概率标签融合的生成模型。
Multimodal Brain Image Anal (2012). 2012;7509:115-133. doi: 10.1007/978-3-642-33530-3_10.

本文引用的文献

4
A Bayesian model for joint segmentation and registration.一种用于联合分割与配准的贝叶斯模型。
Neuroimage. 2006 May 15;31(1):228-39. doi: 10.1016/j.neuroimage.2005.11.044. Epub 2006 Feb 7.
7
Automatically parcellating the human cerebral cortex.自动分割人类大脑皮层。
Cereb Cortex. 2004 Jan;14(1):11-22. doi: 10.1093/cercor/bhg087.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验