Suppr超能文献

使用对数优势在概率图谱上定义向量空间。

Using the logarithm of odds to define a vector space on probabilistic atlases.

作者信息

Pohl Kilian M, Fisher John, Bouix Sylvain, Shenton Martha, McCarley Robert W, Grimson W Eric L, Kikinis Ron, Wells William M

机构信息

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

出版信息

Med Image Anal. 2007 Oct;11(5):465-77. doi: 10.1016/j.media.2007.06.003. Epub 2007 Jun 22.

Abstract

The logarithm of the odds ratio (LogOdds) is frequently used in areas such as artificial neural networks, economics, and biology, as an alternative representation of probabilities. Here, we use LogOdds to place probabilistic atlases in a linear vector space. This representation has several useful properties for medical imaging. For example, it not only encodes the shape of multiple anatomical structures but also captures some information concerning uncertainty. We demonstrate that the resulting vector space operations of addition and scalar multiplication have natural probabilistic interpretations. We discuss several examples for placing label maps into the space of LogOdds. First, we relate signed distance maps, a widely used implicit shape representation, to LogOdds and compare it to an alternative that is based on smoothing by spatial Gaussians. We find that the LogOdds approach better preserves shapes in a complex multiple object setting. In the second example, we capture the uncertainty of boundary locations by mapping multiple label maps of the same object into the LogOdds space. Third, we define a framework for non-convex interpolations among atlases that capture different time points in the aging process of a population. We evaluate the accuracy of our representation by generating a deformable shape atlas that captures the variations of anatomical shapes across a population. The deformable atlas is the result of a principal component analysis within the LogOdds space. This atlas is integrated into an existing segmentation approach for MR images. We compare the performance of the resulting implementation in segmenting 20 test cases to a similar approach that uses a more standard shape model that is based on signed distance maps. On this data set, the Bayesian classification model with our new representation outperformed the other approaches in segmenting subcortical structures.

摘要

优势比的对数(LogOdds)在人工神经网络、经济学和生物学等领域经常被用作概率的一种替代表示。在此,我们使用LogOdds将概率图谱置于线性向量空间中。这种表示对于医学成像具有若干有用的特性。例如,它不仅编码了多个解剖结构的形状,还捕捉了一些关于不确定性的信息。我们证明,所得的加法和标量乘法的向量空间运算具有自然的概率解释。我们讨论了将标签映射放入LogOdds空间的几个示例。首先,我们将广泛使用的隐式形状表示——有符号距离映射与LogOdds联系起来,并将其与基于空间高斯平滑的替代方法进行比较。我们发现,在复杂的多对象设置中,LogOdds方法能更好地保留形状。在第二个示例中,我们通过将同一对象的多个标签映射映射到LogOdds空间来捕捉边界位置的不确定性。第三,我们定义了一个框架,用于在捕捉人群衰老过程中不同时间点的图谱之间进行非凸插值。我们通过生成一个捕捉人群中解剖形状变化的可变形形状图谱来评估我们表示的准确性。该可变形图谱是LogOdds空间内主成分分析的结果。这个图谱被集成到现有的磁共振图像分割方法中。我们将在分割20个测试案例时所得实现的性能与使用基于有符号距离映射的更标准形状模型的类似方法进行比较。在这个数据集上,具有我们新表示的贝叶斯分类模型在分割皮质下结构方面优于其他方法。

相似文献

1
Using the logarithm of odds to define a vector space on probabilistic atlases.使用对数优势在概率图谱上定义向量空间。
Med Image Anal. 2007 Oct;11(5):465-77. doi: 10.1016/j.media.2007.06.003. Epub 2007 Jun 22.
2
Logarithm odds maps for shape representation.用于形状表示的对数几率图。
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):955-63. doi: 10.1007/11866763_117.
3
Probabilistic brain atlas encoding using Bayesian inference.使用贝叶斯推理的概率性脑图谱编码
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):704-11. doi: 10.1007/11866565_86.
5
Label space: a coupled multi-shape representation.标签空间:一种耦合多形状表示。
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):416-24. doi: 10.1007/978-3-540-85990-1_50.
6
Probabilistic multi-shape representation using an isometric log-ratio mapping.使用等距对数比映射的概率多形状表示。
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):563-70. doi: 10.1007/978-3-642-15711-0_70.
9
Joint segmentation of image ensembles via latent atlases.通过潜在图谱实现图像集合的联合分割。
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):272-80. doi: 10.1007/978-3-642-04268-3_34.

引用本文的文献

2
An Optimal, Generative Model for Estimating Multi-Label Probabilistic Maps.用于估计多标签概率图谱的最优生成模型。
IEEE Trans Med Imaging. 2020 Jul;39(7):2316-2326. doi: 10.1109/TMI.2020.2968917. Epub 2020 Jan 23.
5
OPTIMAL PARAMETER MAP ESTIMATION FOR SHAPE REPRESENTATION: A GENERATIVE APPROACH.用于形状表示的最优参数映射估计:一种生成式方法。
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:660-663. doi: 10.1109/ISBI.2016.7493353. Epub 2016 Jun 16.
6
Probabilistic liver atlas construction.概率性肝脏图谱构建
Biomed Eng Online. 2017 Jan 13;16(1):15. doi: 10.1186/s12938-016-0305-8.
7
Automated liver segmentation from a postmortem CT scan based on a statistical shape model.基于统计形状模型的尸检CT扫描肝脏自动分割
Int J Comput Assist Radiol Surg. 2017 Feb;12(2):205-221. doi: 10.1007/s11548-016-1481-5. Epub 2016 Sep 22.

本文引用的文献

3
Adaptive segmentation of MRI data.MRI 数据的自适应分割。
IEEE Trans Med Imaging. 1996;15(4):429-42. doi: 10.1109/42.511747.
5
Validation of image segmentation by estimating rater bias and variance.通过估计评分者偏差和方差来验证图像分割
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):839-47. doi: 10.1007/11866763_103.
6
A Bayesian model for joint segmentation and registration.一种用于联合分割与配准的贝叶斯模型。
Neuroimage. 2006 May 15;31(1):228-39. doi: 10.1016/j.neuroimage.2005.11.044. Epub 2006 Feb 7.
7
Unified segmentation.统一分割
Neuroimage. 2005 Jul 1;26(3):839-51. doi: 10.1016/j.neuroimage.2005.02.018. Epub 2005 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验