Pohl Kilian M, Fisher John, Bouix Sylvain, Shenton Martha, McCarley Robert W, Grimson W Eric L, Kikinis Ron, Wells William M
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Med Image Anal. 2007 Oct;11(5):465-77. doi: 10.1016/j.media.2007.06.003. Epub 2007 Jun 22.
The logarithm of the odds ratio (LogOdds) is frequently used in areas such as artificial neural networks, economics, and biology, as an alternative representation of probabilities. Here, we use LogOdds to place probabilistic atlases in a linear vector space. This representation has several useful properties for medical imaging. For example, it not only encodes the shape of multiple anatomical structures but also captures some information concerning uncertainty. We demonstrate that the resulting vector space operations of addition and scalar multiplication have natural probabilistic interpretations. We discuss several examples for placing label maps into the space of LogOdds. First, we relate signed distance maps, a widely used implicit shape representation, to LogOdds and compare it to an alternative that is based on smoothing by spatial Gaussians. We find that the LogOdds approach better preserves shapes in a complex multiple object setting. In the second example, we capture the uncertainty of boundary locations by mapping multiple label maps of the same object into the LogOdds space. Third, we define a framework for non-convex interpolations among atlases that capture different time points in the aging process of a population. We evaluate the accuracy of our representation by generating a deformable shape atlas that captures the variations of anatomical shapes across a population. The deformable atlas is the result of a principal component analysis within the LogOdds space. This atlas is integrated into an existing segmentation approach for MR images. We compare the performance of the resulting implementation in segmenting 20 test cases to a similar approach that uses a more standard shape model that is based on signed distance maps. On this data set, the Bayesian classification model with our new representation outperformed the other approaches in segmenting subcortical structures.
优势比的对数(LogOdds)在人工神经网络、经济学和生物学等领域经常被用作概率的一种替代表示。在此,我们使用LogOdds将概率图谱置于线性向量空间中。这种表示对于医学成像具有若干有用的特性。例如,它不仅编码了多个解剖结构的形状,还捕捉了一些关于不确定性的信息。我们证明,所得的加法和标量乘法的向量空间运算具有自然的概率解释。我们讨论了将标签映射放入LogOdds空间的几个示例。首先,我们将广泛使用的隐式形状表示——有符号距离映射与LogOdds联系起来,并将其与基于空间高斯平滑的替代方法进行比较。我们发现,在复杂的多对象设置中,LogOdds方法能更好地保留形状。在第二个示例中,我们通过将同一对象的多个标签映射映射到LogOdds空间来捕捉边界位置的不确定性。第三,我们定义了一个框架,用于在捕捉人群衰老过程中不同时间点的图谱之间进行非凸插值。我们通过生成一个捕捉人群中解剖形状变化的可变形形状图谱来评估我们表示的准确性。该可变形图谱是LogOdds空间内主成分分析的结果。这个图谱被集成到现有的磁共振图像分割方法中。我们将在分割20个测试案例时所得实现的性能与使用基于有符号距离映射的更标准形状模型的类似方法进行比较。在这个数据集上,具有我们新表示的贝叶斯分类模型在分割皮质下结构方面优于其他方法。