Khalil Ahmad S, Ferrer Jorge M, Brau Ricardo R, Kottmann Stephen T, Noren Christopher J, Lang Matthew J, Belcher Angela M
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):4892-7. doi: 10.1073/pnas.0605727104. Epub 2007 Mar 13.
The ability to present biomolecules on the highly organized structure of M13 filamentous bacteriophage is a unique advantage. Where previously this viral template was shown to direct the orientation and nucleation of nanocrystals and materials, here we apply it in the context of single-molecule (SM) biophysics. Genetically engineered constructs were used to display different reactive species at each of the filament ends and along the major capsid, and the resulting hetero-functional particles were shown to consistently tether microscopic beads in solution. With this system, we report the development of a SM assay based on M13 bacteriophage. We also report the quantitative characterization of the biopolymer's elasticity by using an optical trap with nanometer-scale position resolution. Expanding the fluctuating rod limit of the wormlike chain to incorporate enthalpic polymer stretching yielded a model capable of accurately capturing the full range of extensions. Fits of the force-extension measurements gave a mean persistence length of approximately 1,265 nm, lending SM support for a shorter filamentous bacteriophage persistence length than previously thought. Furthermore, a predicted stretching modulus roughly two times that of dsDNA, coupled with the system's linkage versatility and load-bearing capability, makes the M13 template an attractive candidate for use in tethered bead architectures.
在M13丝状噬菌体的高度有序结构上展示生物分子的能力具有独特优势。此前已证明这种病毒模板可指导纳米晶体和材料的取向和成核,在此我们将其应用于单分子(SM)生物物理学领域。利用基因工程构建体在丝状噬菌体的每个末端以及沿主要衣壳展示不同的反应性物种,结果表明所得的异功能颗粒能够持续束缚溶液中的微观珠子。通过这个系统,我们报告了基于M13噬菌体的单分子检测方法的开发。我们还报告了通过使用具有纳米级位置分辨率的光镊对生物聚合物弹性进行的定量表征。将蠕虫状链的波动杆极限扩展到包含焓聚合物拉伸,得到了一个能够准确捕捉整个延伸范围的模型。力 - 延伸测量的拟合结果给出了约1265 nm的平均持久长度,为丝状噬菌体的持久长度比之前认为的更短提供了单分子层面的支持。此外,预测的拉伸模量约为双链DNA的两倍,再加上该系统的连接通用性和承载能力,使得M13模板成为用于束缚珠子结构的有吸引力的候选者。