Suppr超能文献

比较人类偶然性学习中的联想、统计和推理推理账户。

Comparing associative, statistical, and inferential reasoning accounts of human contingency learning.

作者信息

Pineño Oskar, Miller Ralph R

机构信息

University of Seville, Seville, Spain.

出版信息

Q J Exp Psychol (Hove). 2007 Mar;60(3):310-29. doi: 10.1080/17470210601000680.

Abstract

For more than two decades, researchers have contrasted the relative merits of associative and statistical theories as accounts of human contingency learning. This debate, still far from resolution, has led to further refinement of models within each family of theories. More recently, a third theoretical view has joined the debate: the inferential reasoning account. The explanations of these three accounts differ critically in many aspects, such as level of analysis and their emphasis on different steps within the information-processing sequence. Also, each account has important advantages (as well as critical flaws) and emphasizes experimental evidence that poses problems to the others. Some hybrid models of human contingency learning have attempted to reconcile certain features of these accounts, thereby benefiting from some of the unique advantages of different families of accounts. A comparison of these families of accounts will help us appreciate the challenges that research on human contingency learning will face over the coming years.

摘要

二十多年来,研究人员一直在对比联想理论和统计理论作为人类偶然性学习解释的相对优点。这场仍远未解决的辩论促使每个理论家族内部的模型得到进一步完善。最近,第三种理论观点加入了这场辩论:推理推理理论。这三种理论的解释在许多方面存在重大差异,例如分析层面以及它们对信息处理序列中不同步骤的强调。此外,每种理论都有重要的优点(以及关键缺陷),并强调了给其他理论带来问题的实验证据。一些人类偶然性学习的混合模型试图调和这些理论的某些特征,从而受益于不同理论家族的一些独特优势。对这些理论家族进行比较将有助于我们认识到未来几年人类偶然性学习研究将面临的挑战。

相似文献

1
Comparing associative, statistical, and inferential reasoning accounts of human contingency learning.
Q J Exp Psychol (Hove). 2007 Mar;60(3):310-29. doi: 10.1080/17470210601000680.
3
Backward versus forward blocking: evidence for performance-based models of human contingency learning.
Psychol Rep. 2011 Dec;109(3):1001-16. doi: 10.2466/22.23.PR0.109.6.1001-1016.
4
A review of recent developments in research and theories on human contingency learning.
Q J Exp Psychol B. 2002 Oct;55(4):289-310. doi: 10.1080/02724990244000034.
5
Inferential dependencies in causal inference: a comparison of belief-distribution and associative approaches.
J Exp Psychol Gen. 2013 Aug;142(3):845-63. doi: 10.1037/a0029727. Epub 2012 Sep 10.
6
Causal superlearning arising from interactions among cues.
J Exp Psychol Anim Learn Cogn. 2017 Apr;43(2):183-196. doi: 10.1037/xan0000137.
7
Asymmetries in cue competition in forward and backward blocking designs: Further evidence for causal model theory.
Q J Exp Psychol (Hove). 2007 Mar;60(3):387-99. doi: 10.1080/17470210601000839.
8
"Causal reasoning" in rats: a reappraisal.
J Exp Psychol Anim Behav Process. 2009 Oct;35(4):578-86. doi: 10.1037/a0015007.
9
What are association formation models?
Learn Behav. 2009 Feb;37(1):21-4; discussion 25-6. doi: 10.3758/LB.37.1.21.

引用本文的文献

2
The relation between implicit statistical learning and proactivity as revealed by EEG.
Sci Rep. 2023 Sep 22;13(1):15787. doi: 10.1038/s41598-023-42116-y.
3
Prior experience modifies acquisition trajectories via response-strategy sampling.
Anim Cogn. 2023 Jul;26(4):1217-1239. doi: 10.1007/s10071-023-01769-y. Epub 2023 Apr 10.
5
Transitive reasoning distorts induction in causal chains.
Mem Cognit. 2016 Apr;44(3):469-87. doi: 10.3758/s13421-015-0568-5.
6
Illusions of causality: how they bias our everyday thinking and how they could be reduced.
Front Psychol. 2015 Jul 2;6:888. doi: 10.3389/fpsyg.2015.00888. eCollection 2015.
7
Selectivity in associative learning: a cognitive stage framework for blocking and cue competition phenomena.
Front Psychol. 2014 Nov 12;5:1305. doi: 10.3389/fpsyg.2014.01305. eCollection 2014.

本文引用的文献

1
Further evidence for the role of inferential reasoning in forward blocking.
Mem Cognit. 2005 Sep;33(6):1047-56. doi: 10.3758/bf03193212.
2
3
Competence and performance in causal learning.
Learn Behav. 2005 May;33(2):211-29. doi: 10.3758/bf03196064.
5
Judging relationships between events: how do we do it?
Can J Exp Psychol. 2005 Mar;59(1):22-7. doi: 10.1037/h0087456.
6
Outcome additivity and outcome maximality influence cue competition in human causal learning.
J Exp Psychol Learn Mem Cogn. 2005 Mar;31(2):238-49. doi: 10.1037/0278-7393.31.2.238.
7
Seeing versus doing: two modes of accessing causal knowledge.
J Exp Psychol Learn Mem Cogn. 2005 Mar;31(2):216-27. doi: 10.1037/0278-7393.31.2.216.
8
Outcome additivity, elemental processing and blocking in human causality judgements.
Q J Exp Psychol B. 2004 Oct;57(4):361-79. doi: 10.1080/02724990444000005.
9
The learning curve: implications of a quantitative analysis.
Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13124-31. doi: 10.1073/pnas.0404965101. Epub 2004 Aug 26.
10
A mathematical model for simple learning.
Psychol Rev. 1951 Sep;58(5):313-23. doi: 10.1037/h0054388.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验