Rogers Melanie S, Tyler Ejan M, Akyumani Nana, Kurtis Christian R, Spooner R Kate, Deacon Sarah E, Tamber Sarita, Firbank Susan J, Mahmoud Khaled, Knowles Peter F, Phillips Simon E V, McPherson Michael J, Dooley David M
Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA.
Biochemistry. 2007 Apr 17;46(15):4606-18. doi: 10.1021/bi062139d. Epub 2007 Mar 27.
The function of the stacking tryptophan, W290, a second-coordination sphere residue in galactose oxidase, has been investigated via steady-state kinetics measurements, absorption, CD and EPR spectroscopy, and X-ray crystallography of the W290F, W290G, and W290H variants. Enzymatic turnover is significantly slower in the W290 variants. The Km for D-galactose for W290H is similar to that of the wild type, whereas the Km is greatly elevated in W290G and W290F, suggesting a role for W290 in substrate binding and/or positioning via the NH group of the indole ring. Hydrogen bonding between W290 and azide in the wild type-azide crystal structure are consistent with this function. W290 modulates the properties and reactivity of the redox-active tyrosine radical; the Y272 tyrosyl radicals in both the W290G and W290H variants have elevated redox potentials and are highly unstable compared to the radical in W290F, which has properties similar to those of the wild-type tyrosyl radical. W290 restricts the accessibility of the Y272 radical site to solvent. Crystal structures show that Y272 is significantly more solvent exposed in the W290G variant but that W290F limits solvent access comparable to the wild-type indole side chain. Spectroscopic studies indicate that the Cu(II) ground states in the semireduced W290 variants are very similar to that of the wild-type protein. In addition, the electronic structures of W290X-azide complexes are also closely similar to the wild-type electronic structure. Azide binding and azide-mediated proton uptake by Y495 are perturbed in the variants, indicating that tryptophan also modulates the function of the catalytic base (Y495) in the wild-type enzyme. Thus, W290 plays multiple critical roles in enzyme catalysis, affecting substrate binding, the tyrosyl radical redox potential and stability, and the axial tyrosine function.
通过对W290F、W290G和W290H变体进行稳态动力学测量、吸收光谱、圆二色光谱和电子顺磁共振光谱以及X射线晶体学研究,对半乳糖氧化酶中堆叠色氨酸W290(二级配位球残基)的功能进行了探究。W290变体中的酶促周转明显较慢。W290H对D-半乳糖的Km与野生型相似,而W290G和W290F中的Km大幅升高,这表明W290通过吲哚环的NH基团在底物结合和/或定位中发挥作用。野生型-叠氮化物晶体结构中W290与叠氮化物之间的氢键与此功能一致。W290调节氧化还原活性酪氨酸自由基的性质和反应性;与具有与野生型酪氨酸自由基相似性质的W290F中的自由基相比,W290G和W290H变体中的Y272酪氨酸自由基具有更高的氧化还原电位且高度不稳定。W290限制了Y272自由基位点与溶剂的可及性。晶体结构表明,Y272在W290G变体中明显更易暴露于溶剂中,但W290F限制溶剂进入的程度与野生型吲哚侧链相当。光谱研究表明,半还原的W290变体中的Cu(II)基态与野生型蛋白的非常相似。此外,W290X-叠氮化物复合物的电子结构也与野生型电子结构非常相似。变体中叠氮化物的结合以及Y495介导的叠氮化物质子摄取受到干扰,表明色氨酸也调节野生型酶中催化碱(Y495)的功能。因此,W290在酶催化中发挥多种关键作用,影响底物结合、酪氨酸自由基的氧化还原电位和稳定性以及轴向酪氨酸功能。