Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
Cell Mol Life Sci. 2021 Dec;78(24):8187-8208. doi: 10.1007/s00018-021-03981-w. Epub 2021 Nov 5.
There is significant contemporary interest in the application of enzymes to replace or augment chemical reagents toward the development of more environmentally sound and sustainable processes. In particular, copper radical oxidases (CRO) from Auxiliary Activity Family 5 Subfamily 2 (AA5_2) are attractive, organic cofactor-free catalysts for the chemoselective oxidation of alcohols to the corresponding aldehydes. These enzymes were first defined by the archetypal galactose-6-oxidase (GalOx, EC 1.1.3.13) from the fungus Fusarium graminearum. The recent discovery of specific alcohol oxidases (EC 1.1.3.7) and aryl alcohol oxidases (EC 1.1.3.47) within AA5_2 has indicated a potentially broad substrate scope among fungal CROs. However, only relatively few AA5_2 members have been characterized to date. Guided by sequence similarity network and phylogenetic analysis, twelve AA5_2 homologs have been recombinantly produced and biochemically characterized in the present study. As defined by their predominant activities, these comprise four galactose 6-oxidases, two raffinose oxidases, four broad-specificity primary alcohol oxidases, and two non-carbohydrate alcohol oxidases. Of particular relevance to applications in biomass valorization, detailed product analysis revealed that two CROs produce the bioplastics monomer furan-2,5-dicarboxylic acid (FDCA) directly from 5-hydroxymethylfurfural (HMF). Furthermore, several CROs could desymmetrize glycerol (a by-product of the biodiesel industry) to D- or L-glyceraldehyde. This study furthers our understanding of CROs by doubling the number of characterized AA5_2 members, which may find future applications as biocatalysts in diverse processes.
当前,人们对酶的应用产生了浓厚的兴趣,希望用酶替代或补充化学试剂,从而开发出更加环保、可持续的工艺。特别是辅助活性家族 5 亚家族 2(AA5_2)中的铜自由基氧化酶(CRO),作为一种不含有机辅因子的催化剂,可用于选择性氧化醇为相应的醛。该酶最早由真菌 Fusarium graminearum 中的典型半乳糖氧化酶(GalOx,EC 1.1.3.13)定义。最近在 AA5_2 中发现了特定的醇氧化酶(EC 1.1.3.7)和芳醇氧化酶(EC 1.1.3.47),这表明真菌 CRO 具有潜在的广泛底物范围。然而,迄今为止,只有相对较少的 AA5_2 成员得到了表征。本研究基于序列相似性网络和系统发育分析,重组生产了 12 个 AA5_2 同源物,并对其进行了生化特性分析。根据其主要活性,这些酶包括 4 个半乳糖 6-氧化酶、2 个蜜二糖氧化酶、4 个广谱初级醇氧化酶和 2 个非碳水化合物醇氧化酶。其中两个 CRO 可直接将 5-羟甲基糠醛(HMF)转化为生物塑料单体呋喃-2,5-二羧酸(FDCA),这一发现与生物量增值应用特别相关。详细的产物分析表明,这一发现与生物量增值应用特别相关。此外,几种 CRO 可以将生物柴油工业的副产物甘油不对称地转化为 D-或 L-甘油醛。本研究通过将已鉴定的 AA5_2 成员数量增加一倍,进一步加深了我们对 CRO 的认识,这些 CRO 未来可能会作为生物催化剂应用于各种不同的过程中。