Suppr超能文献

作为抗菌纳米药物的靶向载药噬菌体

Targeted drug-carrying bacteriophages as antibacterial nanomedicines.

作者信息

Yacoby Iftach, Bar Hagit, Benhar Itai

机构信息

Green Building Room 202, Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Ramat Aviv 69978, Israel.

出版信息

Antimicrob Agents Chemother. 2007 Jun;51(6):2156-63. doi: 10.1128/AAC.00163-07. Epub 2007 Apr 2.

Abstract

While the resistance of bacteria to traditional antibiotics is a major public health concern, the use of extremely potent antibacterial agents is limited by their lack of selectivity. As in cancer therapy, antibacterial targeted therapy could provide an opportunity to reintroduce toxic substances to the antibacterial arsenal. A desirable targeted antibacterial agent should combine binding specificity, a large drug payload per binding event, and a programmed drug release mechanism. Recently, we presented a novel application of filamentous bacteriophages as targeted drug carriers that could partially inhibit the growth of Staphylococcus aureus bacteria. This partial success was due to limitations of drug-loading capacity that resulted from the hydrophobicity of the drug. Here we present a novel drug conjugation chemistry which is based on connecting hydrophobic drugs to the phage via aminoglycoside antibiotics that serve as solubility-enhancing branched linkers. This new formulation allowed a significantly larger drug-carrying capacity of the phages, resulting in a drastic improvement in their performance as targeted drug-carrying nanoparticles. As an example for a potential systemic use for potent agents that are limited for topical use, we present antibody-targeted phage nanoparticles that carry a large payload of the hemolytic antibiotic chloramphenicol connected through the aminoglycoside neomycin. We demonstrate complete growth inhibition toward the pathogens Staphylococcus aureus, Streptococcus pyogenes, and Escherichia coli with an improvement in potency by a factor of approximately 20,000 compared to the free drug.

摘要

虽然细菌对传统抗生素的耐药性是一个重大的公共卫生问题,但超强力抗菌剂的使用因其缺乏选择性而受到限制。与癌症治疗一样,抗菌靶向治疗可能为将有毒物质重新引入抗菌药库提供机会。理想的靶向抗菌剂应兼具结合特异性、每次结合事件携带大量药物以及程序化的药物释放机制。最近,我们提出了丝状噬菌体作为靶向药物载体的新应用,它可以部分抑制金黄色葡萄球菌的生长。这种部分成功归因于药物疏水性导致的载药能力限制。在此,我们提出一种新型药物偶联化学方法,该方法基于通过作为增溶分支连接体的氨基糖苷类抗生素将疏水性药物连接到噬菌体上。这种新配方使噬菌体的载药能力显著提高,从而使其作为靶向载药纳米颗粒的性能得到大幅改善。作为一种潜在的系统使用受限于局部使用的强效药物的示例,我们展示了抗体靶向的噬菌体纳米颗粒,其携带通过氨基糖苷类新霉素连接的大量溶血性抗生素氯霉素。我们证明,与游离药物相比,该纳米颗粒对金黄色葡萄球菌、化脓性链球菌和大肠杆菌等病原体具有完全的生长抑制作用,效力提高了约20000倍。

相似文献

1
Targeted drug-carrying bacteriophages as antibacterial nanomedicines.
Antimicrob Agents Chemother. 2007 Jun;51(6):2156-63. doi: 10.1128/AAC.00163-07. Epub 2007 Apr 2.
2
Targeting antibacterial agents by using drug-carrying filamentous bacteriophages.
Antimicrob Agents Chemother. 2006 Jun;50(6):2087-97. doi: 10.1128/AAC.00169-06.
4
In vivo characteristics of targeted drug-carrying filamentous bacteriophage nanomedicines.
J Nanobiotechnology. 2011 Dec 20;9:58. doi: 10.1186/1477-3155-9-58.
5
Killing cancer cells by targeted drug-carrying phage nanomedicines.
BMC Biotechnol. 2008 Apr 3;8:37. doi: 10.1186/1472-6750-8-37.
6
Effects of single and combined use of bacteriophages and antibiotics to inactivate Escherichia coli.
Virus Res. 2017 Aug 15;240:8-17. doi: 10.1016/j.virusres.2017.07.015. Epub 2017 Jul 23.
7
Back to the future: bacteriophages as promising therapeutic tools.
HLA. 2016 Mar;87(3):133-40. doi: 10.1111/tan.12742. Epub 2016 Feb 19.
10
Multifunctional fluorescent titania nanoparticles: green preparation and applications as antibacterial and cancer theranostic agents.
Artif Cells Nanomed Biotechnol. 2018;46(sup2):248-259. doi: 10.1080/21691401.2018.1454932. Epub 2018 Mar 29.

引用本文的文献

2
Bacteriophages as Targeted Therapeutic Vehicles: Challenges and Opportunities.
Bioengineering (Basel). 2025 Apr 29;12(5):469. doi: 10.3390/bioengineering12050469.
3
Addressing the global challenge of bacterial drug resistance: insights, strategies, and future directions.
Front Microbiol. 2025 Feb 24;16:1517772. doi: 10.3389/fmicb.2025.1517772. eCollection 2025.
4
Beyond Antibiotics: Exploring the Potential of Bacteriophages and Phage Therapy.
Phage (New Rochelle). 2024 Dec 18;5(4):186-202. doi: 10.1089/phage.2024.0005. eCollection 2024 Dec.
5
Peptides rapidly transport antibiotic across the intact tympanic membrane to treat a middle ear infection.
Drug Deliv. 2025 Dec;32(1):2463427. doi: 10.1080/10717544.2025.2463427. Epub 2025 Feb 17.
6
Engineering Phages to Fight Multidrug-Resistant Bacteria.
Chem Rev. 2025 Jan 22;125(2):933-971. doi: 10.1021/acs.chemrev.4c00681. Epub 2024 Dec 16.
7
A Comprehensive Review on Phage Therapy and Phage-Based Drug Development.
Antibiotics (Basel). 2024 Sep 11;13(9):870. doi: 10.3390/antibiotics13090870.
8
Phage display for the detection, analysis, disinfection, and prevention of .
Smart Med. 2022 Dec 23;1(1):e20220015. doi: 10.1002/SMMD.20220015. eCollection 2022 Dec.
9
Pharmacokinetics and Biodistribution of Phages and their Current Applications in Antimicrobial Therapy.
Adv Ther (Weinh). 2024 Mar;7(3). doi: 10.1002/adtp.202300355. Epub 2023 Dec 13.
10
Phage Display as a Medium for Target Therapy Based Drug Discovery, Review and Update.
Mol Biotechnol. 2025 Jun;67(6):2161-2184. doi: 10.1007/s12033-024-01195-6. Epub 2024 Jun 1.

本文引用的文献

1
Phage display selection and analysis of Ab-binding epitopes.
Curr Protoc Immunol. 2002 Nov;Chapter 9:9.8.1-9.8.27. doi: 10.1002/0471142735.im0908s50.
2
Polymer conjugates as anticancer nanomedicines.
Nat Rev Cancer. 2006 Sep;6(9):688-701. doi: 10.1038/nrc1958. Epub 2006 Aug 10.
3
Targeting antibacterial agents by using drug-carrying filamentous bacteriophages.
Antimicrob Agents Chemother. 2006 Jun;50(6):2087-97. doi: 10.1128/AAC.00169-06.
4
Can biotech deliver new antibiotics?
Curr Opin Microbiol. 2005 Oct;8(5):498-503. doi: 10.1016/j.mib.2005.08.007.
6
Molecular biomimetics: nanotechnology through biology.
Nat Mater. 2003 Sep;2(9):577-85. doi: 10.1038/nmat964.
7
Monoclonal antibody drug immunoconjugates for targeted treatment of cancer.
Cancer Immunol Immunother. 2003 May;52(5):328-37. doi: 10.1007/s00262-002-0352-9. Epub 2003 Jan 16.
8
The future challenges facing the development of new antimicrobial drugs.
Nat Rev Drug Discov. 2002 Nov;1(11):895-910. doi: 10.1038/nrd940.
9
Immunotoxins in cancer therapy.
Curr Opin Immunol. 1999 Oct;11(5):570-8. doi: 10.1016/s0952-7915(99)00005-9.
10
Reduced chloramphenicol-induced damage to DNA.
J Antimicrob Chemother. 1981 Jun;7(6):593-7. doi: 10.1093/jac/7.6.593.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验