Suppr超能文献

通过网络中使用反馈回路的节点分类实现布尔动力学的特性

Properties of Boolean dynamics by node classification using feedback loops in a network.

作者信息

Kwon Yung-Keun

机构信息

School of Electrical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, Republic of Korea.

出版信息

BMC Syst Biol. 2016 Aug 24;10(1):83. doi: 10.1186/s12918-016-0322-z.

Abstract

BACKGROUND

Biological networks keep their functions robust against perturbations. Many previous studies through simulations or experiments have shown that feedback loop (FBL) structures play an important role in controlling the network robustness without fully explaining how they do it. Hence, there is a pressing need to more rigorously analyze the influence of FBL structures on network robustness.

RESULTS

In this paper, I propose a novel node classification notion based on the FBL structures involved. More specifically, I classify a node as a no-FBL-in-upstream (NFU) or no-FBL-in-downstream (NFD) node if no feedback loop is involved with any upstream or downstream path of the node, respectively. Based on those definitions, I first prove that every NFU node is eventually frozen in Boolean dynamics. Thus, NFU nodes converge to a fixed value determined by the upstream source nodes. Second, I prove that a network is robust against an arbitrary state perturbation subject to a non-source NFD node. This implies that a network state eventually sustains the attractor despite a perturbation subject to a non-source NFD node. Inspired by this result, I further propose a perturbation-sustainable probability that indicates how likely a perturbation effect is to be sustained through propagations. I show that genes with a high perturbation-sustainable probability are likely to be essential, disease, and drug-target genes in large human signaling networks.

CONCLUSION

Taken together, these results will promote understanding of the effects of FBL on network robustness in a more rigorous manner.

摘要

背景

生物网络能使其功能在受到干扰时保持稳健。此前许多通过模拟或实验进行的研究表明,反馈回路(FBL)结构在控制网络稳健性方面发挥着重要作用,但并未充分解释其作用方式。因此,迫切需要更严格地分析FBL结构对网络稳健性的影响。

结果

在本文中,我基于所涉及的FBL结构提出了一种新颖的节点分类概念。更具体地说,如果一个节点的任何上游或下游路径都不涉及反馈回路,那么我将该节点分别分类为上游无FBL(NFU)节点或下游无FBL(NFD)节点。基于这些定义,我首先证明了在布尔动力学中每个NFU节点最终都会冻结。因此,NFU节点会收敛到由上游源节点确定的固定值。其次,我证明了网络对于受非源NFD节点影响的任意状态扰动具有稳健性。这意味着尽管受到非源NFD节点的扰动,网络状态最终仍会维持在吸引子状态。受此结果启发,我进一步提出了一种扰动可持续概率,该概率表明扰动效应通过传播得以维持的可能性。我表明,在大型人类信号网络中,具有高扰动可持续概率的基因很可能是必需基因、疾病相关基因和药物靶点基因。

结论

综上所述,这些结果将以更严格的方式促进对FBL对网络稳健性影响的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8eb/4997653/3752980dfd79/12918_2016_322_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验