Lytton William W, Omurtag Ahmet
Department of Physiology, SUNY Downstate, Brooklyn, NY, USA.
J Clin Neurophysiol. 2007 Apr;24(2):175-81. doi: 10.1097/WNP.0b013e3180336fc0.
Network simulations can help identify underlying mechanisms of epileptic activity that are hard to isolate in biologic preparations. To be useful, simulations must be sufficiently realistic to make possible biologic and clinical prediction. This requirement for large networks of sufficiently detailed neurons raises challenges both with regard to computational load and the difficulty of obtaining insights with large numbers of free parameters and the large amounts of generated data. The authors have addressed these problems by simulating computationally manageable networks of moderate size consisting of 1,000 to 3,000 neurons with multiple intrinsic and synaptic properties. Experiments on these simulations demonstrated the presence of epileptiform behavior in the form of repetitive high-intensity population events (clonic behavior) or latch-up with near maximal activity (tonic behavior). Intrinsic neuronal excitability is not always a predictor of network epileptiform activity but may paradoxically produce antiepileptic effects, depending on the settings of other parameters. Several simulations revealed the importance of random coincident inputs to shift a network from a low-activation to a high-activation epileptiform state. Finally, a simulated anticonvulsant acting on excitability tended to preferentially decrease tonic activity.
网络模拟有助于识别癫痫活动的潜在机制,而这些机制在生物制剂中很难分离出来。要发挥作用,模拟必须足够逼真,以便进行生物学和临床预测。对于由足够详细的神经元组成的大型网络的这一要求,在计算负荷以及处理大量自由参数和大量生成数据以获得见解的难度方面都带来了挑战。作者通过模拟由1000至3000个具有多种内在和突触特性的神经元组成的中等规模且计算上可管理的网络,解决了这些问题。对这些模拟进行的实验表明,存在癫痫样行为,其形式为重复性高强度群体事件(阵挛行为)或近乎最大活动的闭锁(强直行为)。内在神经元兴奋性并不总是网络癫痫样活动的预测指标,但根据其他参数的设置,可能会产生相反的抗癫痫作用。一些模拟揭示了随机同时输入对于将网络从低激活状态转变为高激活癫痫样状态的重要性。最后,一种作用于兴奋性的模拟抗惊厥药物倾向于优先降低强直活动。