Laboratoire Psychologie de la Perception, CNRS and Université Paris Descartes, Paris 75006, France, and Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris Cedex 05, 75230 France.
Neural Comput. 2011 Jun;23(6):1503-35. doi: 10.1162/NECO_a_00123. Epub 2011 Mar 11.
High-level languages (Matlab, Python) are popular in neuroscience because they are flexible and accelerate development. However, for simulating spiking neural networks, the cost of interpretation is a bottleneck. We describe a set of algorithms to simulate large spiking neural networks efficiently with high-level languages using vector-based operations. These algorithms constitute the core of Brian, a spiking neural network simulator written in the Python language. Vectorized simulation makes it possible to combine the flexibility of high-level languages with the computational efficiency usually associated with compiled languages.
高级语言(如 Matlab、Python)在神经科学中很受欢迎,因为它们灵活且能加速研究进展。然而,对于尖峰神经网络的模拟来说,解释的成本是一个瓶颈。我们描述了一组算法,这些算法使用基于向量的操作,能有效地用高级语言来模拟大型的尖峰神经网络。这些算法构成了 Brian 的核心,Brian 是一个用 Python 语言编写的尖峰神经网络模拟器。矢量化模拟使得将高级语言的灵活性与通常与编译语言相关联的计算效率结合起来成为可能。