Suppr超能文献

人工耳蜗和离体脑源性神经营养因子基因治疗可保护螺旋神经节神经元。

Cochlear implants and ex vivo BDNF gene therapy protect spiral ganglion neurons.

作者信息

Rejali Darius, Lee Valerie A, Abrashkin Karen A, Humayun Nousheen, Swiderski Donald L, Raphael Yehoash

机构信息

Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, USA, and University Hospitals Warwickshire and Coventry NHS Trust, Coventry CV2 2DX, UK.

出版信息

Hear Res. 2007 Jun;228(1-2):180-7. doi: 10.1016/j.heares.2007.02.010. Epub 2007 Mar 7.

Abstract

Spiral ganglion neurons often degenerate in the deaf ear, compromising the function of cochlear implants. Cochlear implant function can be improved by good preservation of the spiral ganglion neurons, which are the target of electrical stimulation by the implant. Brain derived neurotrophic factor (BDNF) has previously been shown to enhance spiral ganglion survival in experimentally deafened ears. Providing enhanced levels of BDNF in human ears may be accomplished by one of several different methods. The goal of these experiments was to test a modified design of the cochlear implant electrode that includes a coating of fibroblast cells transduced by a viral vector with a BDNF gene insert. To accomplish this type of ex vivo gene transfer, we transduced guinea pig fibroblasts with an adenovirus with a BDNF gene cassette insert, and determined that these cells secreted BDNF. We then attached BDNF-secreting cells to the cochlear implant electrode via an agarose gel, and implanted the electrode in the scala tympani. We determined that the BDNF expressing electrodes were able to preserve significantly more spiral ganglion neurons in the basal turns of the cochlea after 48 days of implantation when compared to control electrodes. This protective effect decreased in the higher cochlear turns. The data demonstrate the feasibility of combining cochlear implant therapy with ex vivo gene transfer for enhancing spiral ganglion neuron survival.

摘要

螺旋神经节神经元常在失聪的耳朵中退化,这会损害人工耳蜗的功能。通过良好地保存螺旋神经节神经元(人工耳蜗电刺激的目标),可以改善人工耳蜗的功能。脑源性神经营养因子(BDNF)先前已被证明可提高实验性耳聋耳朵中螺旋神经节的存活率。在人耳中提高BDNF水平可以通过几种不同方法之一来实现。这些实验的目的是测试一种改良设计的人工耳蜗电极,该电极包括一层由携带BDNF基因插入片段的病毒载体转导的成纤维细胞涂层。为了实现这种体外基因转移,我们用携带BDNF基因盒插入片段的腺病毒转导豚鼠成纤维细胞,并确定这些细胞分泌BDNF。然后,我们通过琼脂糖凝胶将分泌BDNF的细胞附着到人工耳蜗电极上,并将电极植入鼓阶。我们确定,与对照电极相比,植入48天后,表达BDNF的电极能够在耳蜗基底转中显著保留更多的螺旋神经节神经元。这种保护作用在耳蜗较高的转中有所降低。数据证明了将人工耳蜗治疗与体外基因转移相结合以提高螺旋神经节神经元存活率的可行性。

相似文献

引用本文的文献

2
Animal models of cochlear implant: Classification and update.人工耳蜗动物模型:分类与更新
J Otol. 2024 Jul;19(3):173-177. doi: 10.1016/j.joto.2024.05.002. Epub 2024 Oct 19.

本文引用的文献

3
Influence of supporting cells on neuronal degeneration after hair cell loss.支持细胞对毛细胞丧失后神经元变性的影响。
J Assoc Res Otolaryngol. 2005 Jun;6(2):136-47. doi: 10.1007/s10162-004-5050-1. Epub 2005 Jun 10.
10
Cochlear implant candidacy and performance trends in children.儿童人工耳蜗植入的适应证及效果趋势
Ann Otol Rhinol Laryngol Suppl. 2002 May;189:62-5. doi: 10.1177/00034894021110s513.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验