Suppr超能文献

连接蛋白26基因敲除小鼠表现出螺旋神经节变性,而这种变性可被脑源性神经营养因子(BDNF)基因疗法所阻断。

Connexin 26 null mice exhibit spiral ganglion degeneration that can be blocked by BDNF gene therapy.

作者信息

Takada Yohei, Beyer Lisa A, Swiderski Donald L, O'Neal Aubrey L, Prieskorn Diane M, Shivatzki Shaked, Avraham Karen B, Raphael Yehoash

机构信息

Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA; Department of Otolaryngology, Kansai Medical University, 2-3-1, Shinmachi, Hirakata, Osaka 573-1191, Japan.

Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA.

出版信息

Hear Res. 2014 Mar;309:124-35. doi: 10.1016/j.heares.2013.11.009. Epub 2013 Dec 12.

Abstract

Mutations in the connexin 26 gene (GJB2) are the most common genetic cause of deafness, leading to congenital bilateral non-syndromic sensorineural hearing loss. Here we report the generation of a mouse model for a connexin 26 (Cx26) mutation, in which cre-Sox10 drives excision of the Cx26 gene from non-sensory cells flanking the auditory epithelium. We determined that these conditional knockout mice, designated Gjb2-CKO, have a severe hearing loss. Immunocytochemistry of the auditory epithelium confirmed absence of Cx26 in the non-sensory cells. Histology of the organ of Corti and the spiral ganglion neurons (SGNs) performed at ages 1, 3, or 6 months revealed that in Gjb2-CKO mice, the organ of Corti began to degenerate in the basal cochlear turn at an early stage, and the degeneration rapidly spread to the apex. In addition, the density of SGNs in Rosenthal's canal decreased rapidly along a gradient from the base of the cochlea to the apex, where some SGNs survived until at least 6 months of age. Surviving neurons often clustered together and formed clumps of cells in the canal. We then assessed the influence of brain derived neurotrophic factor (BDNF) gene therapy on the SGNs of Gjb2-CKO mice by inoculating Adenovirus with the BDNF gene insert (Ad.BDNF) into the base of the cochlea via the scala tympani or scala media. We determined that over-expression of BDNF beginning around 1 month of age resulted in a significant rescue of neurons in Rosenthal's canal of the cochlear basal turn but not in the middle or apical portions. This data may be used to design therapies for enhancing the SGN physiological status in all GJB2 patients and especially in a sub-group of GJB2 patients where the hearing loss progresses due to ongoing degeneration of the auditory nerve, thereby improving the outcome of cochlear implant therapy in these ears.

摘要

连接蛋白26基因(GJB2)突变是耳聋最常见的遗传病因,可导致先天性双侧非综合征性感音神经性听力损失。在此,我们报告了一种连接蛋白26(Cx26)突变小鼠模型的构建,其中cre-Sox10驱动从听觉上皮周围的非感觉细胞中切除Cx26基因。我们确定这些条件性敲除小鼠(命名为Gjb2-CKO)存在严重听力损失。听觉上皮的免疫细胞化学证实非感觉细胞中不存在Cx26。在1、3或6个月龄时对柯蒂氏器和螺旋神经节神经元(SGNs)进行的组织学检查显示,在Gjb2-CKO小鼠中,柯蒂氏器在耳蜗基部早期就开始退化,且退化迅速蔓延至顶端。此外,罗森塔尔管中SGNs的密度沿从耳蜗基部到顶端的梯度迅速降低,其中一些SGNs至少存活到6个月龄。存活的神经元常常聚集在一起,在管内形成细胞团块。然后,我们通过经鼓阶或中阶将携带脑源性神经营养因子(BDNF)基因插入片段的腺病毒(Ad.BDNF)接种到耳蜗基部,评估BDNF基因治疗对Gjb2-CKO小鼠SGNs的影响。我们确定,大约在1月龄开始的BDNF过表达导致耳蜗基部转弯处罗森塔尔管中的神经元得到显著挽救,但中耳或顶端部分则没有。这些数据可用于设计治疗方法,以提高所有GJB2患者尤其是GJB2患者亚组中SGNs的生理状态,这些患者的听力损失因听神经持续退化而进展,从而改善这些耳朵的人工耳蜗治疗效果。

相似文献

引用本文的文献

5
The auditory midbrain mediates tactile vibration sensing.听觉中脑介导触觉振动感知。
Cell. 2025 Jan 9;188(1):104-120.e18. doi: 10.1016/j.cell.2024.11.014. Epub 2024 Dec 18.
7
Cochlear Health and Cochlear-implant Function.耳蜗健康与人工耳蜗功能。
J Assoc Res Otolaryngol. 2023 Feb;24(1):5-29. doi: 10.1007/s10162-022-00882-y. Epub 2023 Jan 4.
8
Advances in Inner Ear Therapeutics for Hearing Loss in Children.儿童听力损失的内耳治疗进展
Curr Otorhinolaryngol Rep. 2020 Sep;8(3):285-294. doi: 10.1007/s40136-020-00300-y. Epub 2020 Jul 6.
9
Connexin Mutations and Hereditary Diseases.缝隙连接突变与遗传性疾病。
Int J Mol Sci. 2022 Apr 12;23(8):4255. doi: 10.3390/ijms23084255.
10
Mechanism and Prevention of Spiral Ganglion Neuron Degeneration in the Cochlea.耳蜗螺旋神经节神经元退变的机制与预防
Front Cell Neurosci. 2022 Jan 5;15:814891. doi: 10.3389/fncel.2021.814891. eCollection 2021.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验