Dunham Christine M, Selmer Maria, Phelps Steven S, Kelley Ann C, Suzuki Tsutomu, Joseph Simpson, Ramakrishnan V
MRC-Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom.
RNA. 2007 Jun;13(6):817-23. doi: 10.1261/rna.367307. Epub 2007 Apr 6.
During translation, some +1 frameshift mRNA sites are decoded by frameshift suppressor tRNAs that contain an extra base in their anticodon loops. Similarly engineered tRNAs have been used to insert nonnatural amino acids into proteins. Here, we report crystal structures of two anticodon stem-loops (ASLs) from tRNAs known to facilitate +1 frameshifting bound to the 30S ribosomal subunit with their cognate mRNAs. ASL(CCCG) and ASL(ACCC) (5'-3' nomenclature) form unpredicted anticodon-codon interactions where the anticodon base 34 at the wobble position contacts either the fourth codon base or the third and fourth codon bases. In addition, we report the structure of ASL(ACGA) bound to the 30S ribosomal subunit with its cognate mRNA. The tRNA containing this ASL was previously shown to be unable to facilitate +1 frameshifting in competition with normal tRNAs (Hohsaka et al. 2001), and interestingly, it displays a normal anticodon-codon interaction. These structures show that the expanded anticodon loop of +1 frameshift promoting tRNAs are flexible enough to adopt conformations that allow three bases of the anticodon to span four bases of the mRNA. Therefore it appears that normal triplet pairing is not an absolute constraint of the decoding center.
在翻译过程中,一些 +1 移码 mRNA 位点由反密码子环中含有额外碱基的移码抑制 tRNA 解码。经过类似工程改造的 tRNA 已被用于将非天然氨基酸插入蛋白质中。在这里,我们报告了已知有助于 +1 移码的两种 tRNA 的反密码子茎环(ASL)与它们的同源 mRNA 结合到 30S 核糖体亚基上的晶体结构。ASL(CCCG) 和 ASL(ACCC)(5'-3' 命名法)形成了意想不到的反密码子 - 密码子相互作用,其中摆动位置的反密码子碱基 34 与密码子的第四个碱基或第三个和第四个密码子碱基接触。此外,我们报告了 ASL(ACGA) 与其同源 mRNA 结合到 30S 核糖体亚基上的结构。先前已表明,含有这种 ASL 的 tRNA 在与正常 tRNA 竞争时无法促进 +1 移码(Hohsaka 等人,2001 年),有趣的是,它显示出正常的反密码子 - 密码子相互作用。这些结构表明,促进 +1 移码的 tRNA 的扩展反密码子环足够灵活,能够采取使反密码子的三个碱基跨越 mRNA 的四个碱基的构象。因此,正常的三联体配对似乎不是解码中心的绝对限制。