Bugli C, Lambert P
Institut de Statistique, Université catholique de Louvain, Voie du Roman Pays, 20, Louvain-la-Neuve, B-1348, Belgium.
Biom J. 2007 Apr;49(2):312-27. doi: 10.1002/bimj.200510285.
Principal Component Analysis (PCA) is a classical technique in statistical data analysis, feature extraction and data reduction, aiming at explaining observed signals as a linear combination of orthogonal principal components. Independent Component Analysis (ICA) is a technique of array processing and data analysis, aiming at recovering unobserved signals or 'sources' from observed mixtures, exploiting only the assumption of mutual independence between the signals. The separation of the sources by ICA has great potential in applications such as the separation of sound signals (like voices mixed in simultaneous multiple records, for example), in telecommunication or in the treatment of medical signals. However, ICA is not yet often used by statisticians. In this paper, we shall present ICA in a statistical framework and compare this method with PCA for electroencephalograms (EEG) analysis. We shall see that ICA provides a more useful data representation than PCA, for instance, for the representation of a particular characteristic of the EEG named event-related potential (ERP).
主成分分析(PCA)是统计数据分析、特征提取和数据约简中的一项经典技术,旨在将观测信号解释为正交主成分的线性组合。独立成分分析(ICA)是一种阵列处理和数据分析技术,旨在从观测到的混合信号中恢复未观测到的信号或“源信号”,仅利用信号之间相互独立的假设。通过ICA分离源信号在诸如声音信号分离(例如,同时多个记录中混合的语音)、电信或医学信号处理等应用中具有巨大潜力。然而,统计学家尚未经常使用ICA。在本文中,我们将在统计框架中介绍ICA,并将该方法与用于脑电图(EEG)分析的PCA进行比较。我们将看到,例如,对于名为事件相关电位(ERP)的EEG的特定特征的表示,ICA提供了比PCA更有用的数据表示。