Umrigar C J, Toulouse Julien, Filippi Claudia, Sorella S, Hennig R G
Theory Center and Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA.
Phys Rev Lett. 2007 Mar 16;98(11):110201. doi: 10.1103/PhysRevLett.98.110201. Epub 2007 Mar 15.
We present a simple, robust, and highly efficient method for optimizing all parameters of many-body wave functions in quantum Monte Carlo calculations, applicable to continuum systems and lattice models. Based on a strong zero-variance principle, diagonalization of the Hamiltonian matrix in the space spanned by the wave function and its derivatives determines the optimal parameters. It systematically reduces the fixed-node error, as demonstrated by the calculation of the binding energy of the small but challenging C(2) molecule to the experimental accuracy of 0.02 eV.
我们提出了一种简单、稳健且高效的方法,用于在量子蒙特卡罗计算中优化多体波函数的所有参数,该方法适用于连续统系统和晶格模型。基于一个强大的零方差原理,在由波函数及其导数所张成的空间中对哈密顿矩阵进行对角化来确定最优参数。正如对虽小但具有挑战性的C₂分子结合能的计算所示,该方法能系统地降低固定节点误差,使其达到0.02电子伏特的实验精度。