Suppr超能文献

针对主要终点和多个纵向协变量过程的联合模型。

Joint models for a primary endpoint and multiple longitudinal covariate processes.

作者信息

Li Erning, Wang Naisyin, Wang Nae-Yuh

机构信息

Department of Statistics, Texas A&M University, College Station, Texas 77843, USA.

出版信息

Biometrics. 2007 Dec;63(4):1068-78. doi: 10.1111/j.1541-0420.2007.00822.x. Epub 2007 May 14.

Abstract

Joint models are formulated to investigate the association between a primary endpoint and features of multiple longitudinal processes. In particular, the subject-specific random effects in a multivariate linear random-effects model for multiple longitudinal processes are predictors in a generalized linear model for primary endpoints. Li, Zhang, and Davidian (2004, Biometrics60, 1-7) proposed an estimation procedure that makes no distributional assumption on the random effects but assumes independent within-subject measurement errors in the longitudinal covariate process. Based on an asymptotic bias analysis, we found that their estimators can be biased when random effects do not fully explain the within-subject correlations among longitudinal covariate measurements. Specifically, the existing procedure is fairly sensitive to the independent measurement error assumption. To overcome this limitation, we propose new estimation procedures that require neither a distributional or covariance structural assumption on covariate random effects nor an independence assumption on within-subject measurement errors. These new procedures are more flexible, readily cover scenarios that have multivariate longitudinal covariate processes, and can be implemented using available software. Through simulations and an analysis of data from a hypertension study, we evaluate and illustrate the numerical performances of the new estimators.

摘要

联合模型旨在研究主要终点与多个纵向过程特征之间的关联。具体而言,多个纵向过程的多元线性随机效应模型中的个体特定随机效应是主要终点广义线性模型中的预测变量。Li、Zhang和Davidian(2004年,《生物统计学》60卷,第1 - 7页)提出了一种估计程序,该程序对随机效应不做分布假设,但假设纵向协变量过程中个体内测量误差相互独立。基于渐近偏差分析,我们发现当随机效应不能完全解释纵向协变量测量之间的个体内相关性时,他们的估计量可能会有偏差。具体来说,现有程序对独立测量误差假设相当敏感。为克服这一局限性,我们提出了新的估计程序,该程序既不需要对协变量随机效应做分布或协方差结构假设,也不需要对个体内测量误差做独立性假设。这些新程序更灵活,能够轻松涵盖具有多元纵向协变量过程的情形,并且可以使用现有软件来实现。通过模拟以及对一项高血压研究数据的分析,我们评估并说明了新估计量的数值性能。

相似文献

8
Regression-assisted deconvolution.回归辅助反卷积。
Stat Med. 2011 Jun 30;30(14):1722-34. doi: 10.1002/sim.4186. Epub 2011 Feb 1.
10
Covariate measurement error and the estimation of random effect parameters in a mixed model for longitudinal data.
Stat Med. 1998 Sep 15;17(17):1959-71. doi: 10.1002/(sici)1097-0258(19980915)17:17<1959::aid-sim886>3.0.co;2-f.

引用本文的文献

10
Functional Generalized Additive Models.功能广义相加模型
J Comput Graph Stat. 2014;23(1):249-269. doi: 10.1080/10618600.2012.729985.

本文引用的文献

5
Blood pressure in young adulthood and the risk of type 2 diabetes in middle age.
Diabetes Care. 2003 Apr;26(4):1110-5. doi: 10.2337/diacare.26.4.1110.
10
Random effects models with non-parametric priors.具有非参数先验的随机效应模型。
Stat Med. 1992 Oct-Nov;11(14-15):1981-2000. doi: 10.1002/sim.4780111416.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验