Li Erning, Wang Naisyin, Wang Nae-Yuh
Department of Statistics, Texas A&M University, College Station, Texas 77843, USA.
Biometrics. 2007 Dec;63(4):1068-78. doi: 10.1111/j.1541-0420.2007.00822.x. Epub 2007 May 14.
Joint models are formulated to investigate the association between a primary endpoint and features of multiple longitudinal processes. In particular, the subject-specific random effects in a multivariate linear random-effects model for multiple longitudinal processes are predictors in a generalized linear model for primary endpoints. Li, Zhang, and Davidian (2004, Biometrics60, 1-7) proposed an estimation procedure that makes no distributional assumption on the random effects but assumes independent within-subject measurement errors in the longitudinal covariate process. Based on an asymptotic bias analysis, we found that their estimators can be biased when random effects do not fully explain the within-subject correlations among longitudinal covariate measurements. Specifically, the existing procedure is fairly sensitive to the independent measurement error assumption. To overcome this limitation, we propose new estimation procedures that require neither a distributional or covariance structural assumption on covariate random effects nor an independence assumption on within-subject measurement errors. These new procedures are more flexible, readily cover scenarios that have multivariate longitudinal covariate processes, and can be implemented using available software. Through simulations and an analysis of data from a hypertension study, we evaluate and illustrate the numerical performances of the new estimators.
联合模型旨在研究主要终点与多个纵向过程特征之间的关联。具体而言,多个纵向过程的多元线性随机效应模型中的个体特定随机效应是主要终点广义线性模型中的预测变量。Li、Zhang和Davidian(2004年,《生物统计学》60卷,第1 - 7页)提出了一种估计程序,该程序对随机效应不做分布假设,但假设纵向协变量过程中个体内测量误差相互独立。基于渐近偏差分析,我们发现当随机效应不能完全解释纵向协变量测量之间的个体内相关性时,他们的估计量可能会有偏差。具体来说,现有程序对独立测量误差假设相当敏感。为克服这一局限性,我们提出了新的估计程序,该程序既不需要对协变量随机效应做分布或协方差结构假设,也不需要对个体内测量误差做独立性假设。这些新程序更灵活,能够轻松涵盖具有多元纵向协变量过程的情形,并且可以使用现有软件来实现。通过模拟以及对一项高血压研究数据的分析,我们评估并说明了新估计量的数值性能。