Beerling David J, Nicholas Hewitt C, Pyle John A, Raven John A
Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
Philos Trans A Math Phys Eng Sci. 2007 Jul 15;365(1856):1629-42. doi: 10.1098/rsta.2007.2037.
The atmospheric composition of trace gases and aerosols is determined by the emission of compounds from the marine and terrestrial biospheres, anthropogenic sources and their chemistry and deposition processes. Biogenic emissions depend upon physiological processes and climate, and the atmospheric chemistry is governed by climate and feedbacks involving greenhouse gases themselves. Understanding and predicting the biogeochemistry of trace gases in past, present and future climates therefore demands an interdisciplinary approach integrating across physiology, atmospheric chemistry, physics and meteorology. Here, we highlight critical issues raised by recent findings in all of these key areas to provide a framework for better understanding the past and possible future evolution of the atmosphere. Incorporating recent experimental and observational findings, especially the influence of CO2 on trace gas emissions from marine algae and terrestrial plants, into earth system models remains a major research priority. As we move towards this goal, archives of the concentration and isotopes of N2O and CH4 from polar ice cores extending back over 650,000 years will provide a valuable benchmark for evaluating such models. In the Pre-Quaternary, synthesis of theoretical modelling with geochemical and palaeontological evidence is also uncovering the roles played by trace gases in episodes of abrupt climatic warming and ozone depletion. Finally, observations and palaeorecords across a range of timescales allow assessment of the Earth's climate sensitivity, a metric influencing our ability to decide what constitutes 'dangerous' climate change.
痕量气体和气溶胶的大气组成取决于海洋和陆地生物圈、人为源排放的化合物及其化学和沉降过程。生物源排放取决于生理过程和气候,而大气化学则受气候以及涉及温室气体本身的反馈作用的支配。因此,要理解和预测过去、现在和未来气候中痕量气体的生物地球化学,就需要一种跨生理学、大气化学、物理学和气象学的跨学科方法。在这里,我们强调所有这些关键领域最近的研究结果所提出的关键问题,以提供一个更好地理解大气过去和未来可能演变的框架。将最近的实验和观测结果,特别是二氧化碳对海洋藻类和陆地植物痕量气体排放的影响,纳入地球系统模型仍然是一个主要的研究重点。在我们朝着这个目标前进的过程中,来自可追溯到65万年前的极地冰芯的一氧化二氮和甲烷浓度及同位素档案将为评估此类模型提供有价值的基准。在第四纪之前,将理论建模与地球化学和古生物学证据相结合,也正在揭示痕量气体在气候突然变暖和臭氧消耗事件中所起的作用。最后,跨一系列时间尺度的观测和古记录有助于评估地球的气候敏感性,这一指标影响着我们判断什么构成“危险”气候变化的能力。