Suppr超能文献

细菌中细胞骨架环和螺旋的力学解释。

A mechanical explanation for cytoskeletal rings and helices in bacteria.

作者信息

Andrews Steven S, Arkin Adam P

机构信息

Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

出版信息

Biophys J. 2007 Sep 15;93(6):1872-84. doi: 10.1529/biophysj.106.102343. Epub 2007 May 18.

Abstract

Several bacterial proteins have been shown to polymerize into coils or rings on cell membranes. These include the cytoskeletal proteins MreB, FtsZ, and MinD, which together with other cell components make up what is being called the bacterial cytoskeleton. We believe that these shapes arise, at least in part, from the interaction of the inherent mechanical properties of the protein polymers and the constraints imposed by the curved cell membrane. This hypothesis, presented as a simple mechanical model, was tested with numerical energy-minimization methods from which we found that there are five low-energy polymer morphologies on a rod-shaped membrane: rings, lines, helices, loops, and polar-targeted circles. Analytic theory was used to understand the possible structures and to create phase diagrams that show which parameter combinations lead to which structures. Inverting the results, it is possible to infer the effective mechanical bending parameters of protein polymers from fluorescence images of their shapes. This theory also provides a plausible explanation for the morphological changes exhibited by the Z ring in a sporulating Bacillus subtilis; is used to calculate the mechanical force exerted on a cell membrane by a polymer; and allows predictions of polymer shapes in mutant cells.

摘要

已有研究表明,几种细菌蛋白可在细胞膜上聚合成螺旋或环状结构。这些蛋白包括细胞骨架蛋白MreB、FtsZ和MinD,它们与其他细胞成分共同构成了所谓的细菌细胞骨架。我们认为,这些形状至少部分源于蛋白质聚合物的固有机械特性与弯曲细胞膜所施加的限制之间的相互作用。作为一个简单的力学模型提出的这一假设,通过数值能量最小化方法进行了验证,我们发现,在棒状细胞膜上存在五种低能量聚合物形态:环状、线状、螺旋状、环状和极性靶向环状。利用解析理论来理解可能的结构,并创建相图,以显示哪些参数组合会导致何种结构。反过来,根据蛋白质聚合物形状的荧光图像,可以推断出其有效的机械弯曲参数。该理论还为枯草芽孢杆菌孢子形成过程中Z环呈现的形态变化提供了合理的解释;用于计算聚合物对细胞膜施加的机械力;并能够预测突变细胞中聚合物的形状。

相似文献

1
A mechanical explanation for cytoskeletal rings and helices in bacteria.细菌中细胞骨架环和螺旋的力学解释。
Biophys J. 2007 Sep 15;93(6):1872-84. doi: 10.1529/biophysj.106.102343. Epub 2007 May 18.
8
Prokaryotic origin of the actin cytoskeleton.肌动蛋白细胞骨架的原核起源。
Nature. 2001 Sep 6;413(6851):39-44. doi: 10.1038/35092500.
9
Origin of contractile force during cell division of bacteria.细菌细胞分裂过程中收缩力的起源。
Phys Rev Lett. 2008 Oct 24;101(17):178101. doi: 10.1103/PhysRevLett.101.178101. Epub 2008 Oct 20.

引用本文的文献

5
Getting into shape: How do rod-like bacteria control their geometry?塑形:杆状细菌如何控制其几何形状?
Syst Synth Biol. 2014 Sep;8(3):227-35. doi: 10.1007/s11693-014-9143-9. Epub 2014 Apr 22.
7
The molecular origins of chiral growth in walled cells.细胞壁细胞手性生长的分子起源。
Curr Opin Microbiol. 2012 Dec;15(6):707-14. doi: 10.1016/j.mib.2012.11.002. Epub 2012 Nov 26.

本文引用的文献

4
Polymer chain models of DNA and chromatin.DNA和染色质的聚合物链模型。
Eur Phys J E Soft Matter. 2006 Mar;19(3):241-9. doi: 10.1140/epje/i2005-10067-9. Epub 2006 Mar 20.
6
Two independent spiral structures control cell shape in Caulobacter.两个独立的螺旋结构控制着柄杆菌属细菌的细胞形态。
Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18608-13. doi: 10.1073/pnas.0507708102. Epub 2005 Dec 12.
8
Spatial control of bacterial division-site placement.细菌分裂位点定位的空间控制。
Nat Rev Microbiol. 2005 Dec;3(12):959-68. doi: 10.1038/nrmicro1290.
10
How to make a spiral bacterium.
Phys Biol. 2005 Sep 22;2(3):189-99. doi: 10.1088/1478-3975/2/3/006.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验