Suppr超能文献

细胞形状可以调节细菌细胞骨架的空间组织。

Cell shape can mediate the spatial organization of the bacterial cytoskeleton.

机构信息

Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.

出版信息

Biophys J. 2013 Feb 5;104(3):541-52. doi: 10.1016/j.bpj.2012.12.027.

Abstract

The bacterial cytoskeleton guides the synthesis of cell wall and thus regulates cell shape. Because spatial patterning of the bacterial cytoskeleton is critical to the proper control of cell shape, it is important to ask how the cytoskeleton spatially self-organizes in the first place. In this work, we develop a quantitative model to account for the various spatial patterns adopted by bacterial cytoskeletal proteins, especially the orientation and length of cytoskeletal filaments such as FtsZ and MreB in rod-shaped cells. We show that the combined mechanical energy of membrane bending, membrane pinning, and filament bending of a membrane-attached cytoskeletal filament can be sufficient to prescribe orientation, e.g., circumferential for FtsZ or helical for MreB, with the accuracy of orientation increasing with the length of the cytoskeletal filament. Moreover, the mechanical energy can compete with the chemical energy of cytoskeletal polymerization to regulate filament length. Notably, we predict a conformational transition with increasing polymer length from smoothly curved to end-bent polymers. Finally, the mechanical energy also results in a mutual attraction among polymers on the same membrane, which could facilitate tight polymer spacing or bundling. The predictions of the model can be verified through genetic, microscopic, and microfluidic approaches.

摘要

细菌细胞骨架指导细胞壁的合成,从而调节细胞形状。由于细菌细胞骨架的空间模式对于细胞形状的适当控制至关重要,因此首先要问的是细胞骨架如何在空间上自我组织。在这项工作中,我们开发了一个定量模型来解释细菌细胞骨架蛋白所采用的各种空间模式,特别是杆状细胞中细胞骨架丝(如 FtsZ 和 MreB)的取向和长度。我们表明,膜附着细胞骨架丝的膜弯曲、膜固定和丝弯曲的组合机械能足以规定取向,例如 FtsZ 的圆周向或 MreB 的螺旋向,取向的准确性随着细胞骨架丝的长度增加而增加。此外,机械能可以与细胞骨架聚合的化学能竞争来调节丝的长度。值得注意的是,我们预测随着聚合物长度的增加,聚合物从平滑弯曲到末端弯曲的构象转变。最后,机械能量还导致同一膜上的聚合物之间相互吸引,这有助于聚合物紧密间隔或捆绑。该模型的预测可以通过遗传、显微镜和微流控方法进行验证。

相似文献

1
Cell shape can mediate the spatial organization of the bacterial cytoskeleton.
Biophys J. 2013 Feb 5;104(3):541-52. doi: 10.1016/j.bpj.2012.12.027.
2
Bacterial Filament Systems: Toward Understanding Their Emergent Behavior and Cellular Functions.
J Biol Chem. 2015 Jul 10;290(28):17181-9. doi: 10.1074/jbc.R115.637876. Epub 2015 May 8.
3
Chiral twisting in a bacterial cytoskeletal polymer affects filament size and orientation.
Nat Commun. 2020 Mar 16;11(1):1408. doi: 10.1038/s41467-020-14752-9.
4
The intrinsically disordered C-terminal linker of FtsZ regulates protofilament dynamics and superstructure .
J Biol Chem. 2017 Dec 15;292(50):20509-20527. doi: 10.1074/jbc.M117.809939. Epub 2017 Oct 31.
5
A mechanical explanation for cytoskeletal rings and helices in bacteria.
Biophys J. 2007 Sep 15;93(6):1872-84. doi: 10.1529/biophysj.106.102343. Epub 2007 May 18.
6
FtsZ rings and helices: physical mechanisms for the dynamic alignment of biopolymers in rod-shaped bacteria.
Phys Biol. 2012 Feb;9(1):016009. doi: 10.1088/1478-3975/9/1/016009. Epub 2012 Feb 7.
8
FtsZ filaments have the opposite kinetic polarity of microtubules.
Proc Natl Acad Sci U S A. 2018 Oct 16;115(42):10768-10773. doi: 10.1073/pnas.1811919115. Epub 2018 Oct 1.
9
A growing family: the expanding universe of the bacterial cytoskeleton.
FEMS Microbiol Rev. 2012 Jan;36(1):256-66. doi: 10.1111/j.1574-6976.2011.00316.x. Epub 2011 Nov 28.
10
Force generation in bacteria without nucleotide-dependent bending of cytoskeletal filaments.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051924. doi: 10.1103/PhysRevE.83.051924. Epub 2011 May 27.

引用本文的文献

2
Cell envelope growth of Gram-negative bacteria proceeds independently of cell wall synthesis.
EMBO J. 2023 Jul 17;42(14):e112168. doi: 10.15252/embj.2022112168. Epub 2023 Jun 1.
3
Chiral twisting in a bacterial cytoskeletal polymer affects filament size and orientation.
Nat Commun. 2020 Mar 16;11(1):1408. doi: 10.1038/s41467-020-14752-9.
5
Regulation of cytokinesis: FtsZ and its accessory proteins.
Curr Genet. 2020 Feb;66(1):43-49. doi: 10.1007/s00294-019-01005-6. Epub 2019 Jun 17.
6
Bacillus subtilis cell diameter is determined by the opposing actions of two distinct cell wall synthetic systems.
Nat Microbiol. 2019 Aug;4(8):1294-1305. doi: 10.1038/s41564-019-0439-0. Epub 2019 May 13.
7
Mechanics and dynamics of translocating MreB filaments on curved membranes.
Elife. 2019 Feb 18;8:e40472. doi: 10.7554/eLife.40472.
9
Recent advances in understanding how rod-like bacteria stably maintain their cell shapes.
F1000Res. 2018 Feb 28;7:241. doi: 10.12688/f1000research.12663.1. eCollection 2018.
10
How to Build a Bacterial Cell: MreB as the Foreman of E. coli Construction.
Cell. 2018 Mar 8;172(6):1294-1305. doi: 10.1016/j.cell.2018.02.050.

本文引用的文献

2
Nucleotide-dependent conformations of FtsZ dimers and force generation observed through molecular dynamics simulations.
Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9432-7. doi: 10.1073/pnas.1120761109. Epub 2012 May 30.
3
Estimating the bending modulus of a FtsZ bacterial-division protein filament.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jan;85(1 Pt 1):011902. doi: 10.1103/PhysRevE.85.011902. Epub 2012 Jan 3.
4
Helical insertion of peptidoglycan produces chiral ordering of the bacterial cell wall.
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):E595-604. doi: 10.1073/pnas.1117132109. Epub 2012 Feb 17.
5
6
Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells.
Phys Rev Lett. 2011 Oct 7;107(15):158101. doi: 10.1103/PhysRevLett.107.158101. Epub 2011 Oct 6.
7
Direct membrane binding by bacterial actin MreB.
Mol Cell. 2011 Aug 5;43(3):478-87. doi: 10.1016/j.molcel.2011.07.008.
8
Dynamic instability of a growing adsorbed polymorphic filament.
Biophys J. 2011 Jul 20;101(2):267-75. doi: 10.1016/j.bpj.2011.04.056.
9
Mechanisms for maintaining cell shape in rod-shaped Gram-negative bacteria.
Mol Microbiol. 2011 Jul;81(2):340-53. doi: 10.1111/j.1365-2958.2011.07616.x. Epub 2011 Apr 18.
10
Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes.
Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6264-9. doi: 10.1073/pnas.1015757108. Epub 2011 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验