Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.
Biophys J. 2013 Feb 5;104(3):541-52. doi: 10.1016/j.bpj.2012.12.027.
The bacterial cytoskeleton guides the synthesis of cell wall and thus regulates cell shape. Because spatial patterning of the bacterial cytoskeleton is critical to the proper control of cell shape, it is important to ask how the cytoskeleton spatially self-organizes in the first place. In this work, we develop a quantitative model to account for the various spatial patterns adopted by bacterial cytoskeletal proteins, especially the orientation and length of cytoskeletal filaments such as FtsZ and MreB in rod-shaped cells. We show that the combined mechanical energy of membrane bending, membrane pinning, and filament bending of a membrane-attached cytoskeletal filament can be sufficient to prescribe orientation, e.g., circumferential for FtsZ or helical for MreB, with the accuracy of orientation increasing with the length of the cytoskeletal filament. Moreover, the mechanical energy can compete with the chemical energy of cytoskeletal polymerization to regulate filament length. Notably, we predict a conformational transition with increasing polymer length from smoothly curved to end-bent polymers. Finally, the mechanical energy also results in a mutual attraction among polymers on the same membrane, which could facilitate tight polymer spacing or bundling. The predictions of the model can be verified through genetic, microscopic, and microfluidic approaches.
细菌细胞骨架指导细胞壁的合成,从而调节细胞形状。由于细菌细胞骨架的空间模式对于细胞形状的适当控制至关重要,因此首先要问的是细胞骨架如何在空间上自我组织。在这项工作中,我们开发了一个定量模型来解释细菌细胞骨架蛋白所采用的各种空间模式,特别是杆状细胞中细胞骨架丝(如 FtsZ 和 MreB)的取向和长度。我们表明,膜附着细胞骨架丝的膜弯曲、膜固定和丝弯曲的组合机械能足以规定取向,例如 FtsZ 的圆周向或 MreB 的螺旋向,取向的准确性随着细胞骨架丝的长度增加而增加。此外,机械能可以与细胞骨架聚合的化学能竞争来调节丝的长度。值得注意的是,我们预测随着聚合物长度的增加,聚合物从平滑弯曲到末端弯曲的构象转变。最后,机械能量还导致同一膜上的聚合物之间相互吸引,这有助于聚合物紧密间隔或捆绑。该模型的预测可以通过遗传、显微镜和微流控方法进行验证。