Hörger Ines, Velasco Enrique, Rivas Germán, Vélez Marisela, Tarazona Pedro
Biophys J. 2008 Jun;94(11):L81-3. doi: 10.1529/biophysj.107.128363. Epub 2008 Mar 21.
A recent theoretical article provided a mechanical explanation for the formation of cytoskeletal rings and helices in bacteria assuming that these shapes arise, at least in part, from the interaction of the inherent mechanical properties of the protein polymers and the constraints imposed by the curved cell membrane (Andrews, S., and A. P. Arkin. 2007. Biophys. J. 93:1872-1884). Due to the lack of experimental data regarding the bending rigidity and preferential bond angles of bacterial polymers, the authors explored their model over wide ranges of preferred curvature values. In this letter, we present the shape diagram of the FtsZ bacterial polymer on a curved surface but now including recent experimental data on the in vitro formed FtsZ polymers. The lateral interactions between filaments observed experimentally change qualitatively the shape diagram and indicate that the formation of rings over spirals is more energetically favored than estimated in the above-mentioned article.
最近的一篇理论文章对细菌中细胞骨架环和螺旋的形成提供了一种力学解释,假设这些形状至少部分源于蛋白质聚合物的固有力学特性与弯曲细胞膜所施加的限制之间的相互作用(安德鲁斯,S.,和A.P.阿金。2007年。《生物物理杂志》93:1872 - 1884)。由于缺乏关于细菌聚合物弯曲刚度和优先键角的实验数据,作者在广泛的优选曲率值范围内探索了他们的模型。在这封信中,我们展示了FtsZ细菌聚合物在曲面上的形状图,但现在纳入了关于体外形成的FtsZ聚合物的最新实验数据。实验观察到的细丝之间的横向相互作用定性地改变了形状图,并表明形成环比形成螺旋在能量上更有利,这比上述文章中的估计更为明显。