Suppr超能文献

塑形:杆状细菌如何控制其几何形状?

Getting into shape: How do rod-like bacteria control their geometry?

作者信息

Amir Ariel, van Teeffelen Sven

机构信息

Department of Physics, Harvard University, Cambridge, MA 02138 USA.

Groupe Croissance et Morphogénése Microbienne, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.

出版信息

Syst Synth Biol. 2014 Sep;8(3):227-35. doi: 10.1007/s11693-014-9143-9. Epub 2014 Apr 22.

Abstract

Rod-like bacteria maintain their cylindrical shapes with remarkable precision during growth. However, they are also capable to adapt their shapes to external forces and constraints, for example by growing into narrow or curved confinements. Despite being one of the simplest morphologies, we are still far from a full understanding of how shape is robustly regulated, and how bacteria obtain their near-perfect cylindrical shapes with excellent precision. However, recent experimental and theoretical findings suggest that cell-wall geometry and mechanical stress play important roles in regulating cell shape in rod-like bacteria. We review our current understanding of the cell wall architecture and the growth dynamics, and discuss possible candidates for regulatory cues of shape regulation in the absence or presence of external constraints. Finally, we suggest further future experimental and theoretical directions which may help to shed light on this fundamental problem.

摘要

杆状细菌在生长过程中能极其精确地维持其圆柱形形状。然而,它们也能够使自身形状适应外力和限制条件,例如生长进入狭窄或弯曲的受限空间。尽管其形状是最简单的形态之一,但我们仍远未完全理解细菌形状是如何被稳健调控的,以及细菌如何以极高的精度获得近乎完美的圆柱形形状。不过,最近的实验和理论发现表明,细胞壁几何结构和机械应力在调控杆状细菌的细胞形状方面发挥着重要作用。我们回顾了目前对细胞壁结构和生长动力学的理解,并讨论了在有无外部限制条件下形状调控的潜在调节线索。最后,我们提出了未来进一步的实验和理论方向,这可能有助于阐明这一基本问题。

相似文献

1
Getting into shape: How do rod-like bacteria control their geometry?塑形:杆状细菌如何控制其几何形状?
Syst Synth Biol. 2014 Sep;8(3):227-35. doi: 10.1007/s11693-014-9143-9. Epub 2014 Apr 22.
3
Shape dynamics of growing cell walls.生长细胞壁的形态动力学
Soft Matter. 2016 Apr 14;12(14):3442-50. doi: 10.1039/c5sm02991k. Epub 2016 Mar 8.
4
Sculpting the bacterial cell.塑造细菌细胞。
Curr Biol. 2009 Sep 15;19(17):R812-22. doi: 10.1016/j.cub.2009.06.033.
5
Bending forces plastically deform growing bacterial cell walls.弯曲力使生长中的细菌细胞壁产生塑性变形。
Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):5778-83. doi: 10.1073/pnas.1317497111. Epub 2014 Apr 7.
9
Toward a Mechanistic Understanding of Bacterial Rod Shape Formation and Regulation.迈向对细菌杆状形态形成与调控的机制性理解
Annu Rev Cell Dev Biol. 2021 Oct 6;37:1-21. doi: 10.1146/annurev-cellbio-010521-010834. Epub 2021 Jun 29.
10
Exploring Biology: Opportunities and Challenges.探索生物学:机遇与挑战。
Front Microbiol. 2020 Oct 21;11:589279. doi: 10.3389/fmicb.2020.589279. eCollection 2020.

引用本文的文献

2
Effects of spatial heterogeneity on bacterial genetic circuits.空间异质性对细菌遗传回路的影响。
PLoS Comput Biol. 2020 Sep 14;16(9):e1008159. doi: 10.1371/journal.pcbi.1008159. eCollection 2020 Sep.
3
Mechanics and Dynamics of Bacterial Cell Lysis.细菌细胞裂解的力学和动力学。
Biophys J. 2019 Jun 18;116(12):2378-2389. doi: 10.1016/j.bpj.2019.04.040. Epub 2019 May 17.
6
In Vivo study of naturally deformed Escherichia coli bacteria.自然变形大肠杆菌的体内研究
J Bioenerg Biomembr. 2016 Jun;48(3):281-91. doi: 10.1007/s10863-016-9658-8. Epub 2016 Mar 30.

本文引用的文献

1
Bending forces plastically deform growing bacterial cell walls.弯曲力使生长中的细菌细胞壁产生塑性变形。
Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):5778-83. doi: 10.1073/pnas.1317497111. Epub 2014 Apr 7.
5
A dynamically assembled cell wall synthesis machinery buffers cell growth.动态组装的细胞壁合成机械装置可缓冲细胞生长。
Proc Natl Acad Sci U S A. 2014 Mar 25;111(12):4554-9. doi: 10.1073/pnas.1313826111. Epub 2014 Feb 18.
6
Concerted control of Escherichia coli cell division.协调控制大肠杆菌细胞分裂。
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3431-5. doi: 10.1073/pnas.1313715111. Epub 2014 Feb 18.
7
Modes of deformation of walled cells.壁细胞的变形方式。
J Exp Bot. 2013 Nov;64(15):4681-95. doi: 10.1093/jxb/ert268. Epub 2013 Sep 7.
10
Three-dimensional structure of the Z-ring as a random network of FtsZ filaments.Z 环的三维结构是 FtsZ 丝的随机网络。
Environ Microbiol. 2013 Dec;15(12):3252-8. doi: 10.1111/1462-2920.12197. Epub 2013 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验