Suppr超能文献

脑膜炎奈瑟菌病原体中DNA修复途径的遗传相互作用。

Genetic interactions of DNA repair pathways in the pathogen Neisseria meningitidis.

作者信息

Davidsen Tonje, Tuven Hanne K, Bjørås Magnar, Rødland Einar A, Tønjum Tone

机构信息

Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Oslo, Norway.

出版信息

J Bacteriol. 2007 Aug;189(15):5728-37. doi: 10.1128/JB.00161-07. Epub 2007 May 18.

Abstract

The current increase in the incidence and severity of infectious diseases mandates improved understanding of the basic biology and DNA repair profiles of virulent microbes. In our studies of the major pathogen and model organism Neisseria meningitidis, we constructed a panel of mutants inactivating genes involved in base excision repair, mismatch repair, nucleotide excision repair (NER), translesion synthesis, and recombinational repair pathways. The highest spontaneous mutation frequency among the N. meningitidis single mutants was found in the MutY-deficient strain as opposed to mutS mutants in Escherichia coli, indicating a role for meningococcal MutY in antibiotic resistance development. Recombinational repair was recognized as a major pathway counteracting methyl methanesulfonate-induced alkylation damage in the N. meningitidis. In contrast to what has been shown in other species, meningococcal NER did not contribute significantly to repair of alkylation-induced DNA damage, and meningococcal recombinational repair may thus be one of the main pathways for removal of abasic (apurinic/apyrimidinic) sites and strand breaks in DNA. Conversely, NER was identified as the main meningococcal defense pathway against UV-induced DNA damage. N. meningitidis RecA single mutants exhibited only a moderate decrease in survival after UV exposure as opposed to E. coli recA strains, which are extremely UV sensitive, possibly reflecting the lack of a meningococcal SOS response. In conclusion, distinct differences between N. meningitidis and established DNA repair characteristics in E. coli and other species were identified.

摘要

当前传染病发病率和严重程度的上升要求我们更好地理解致病微生物的基础生物学和DNA修复概况。在我们对主要病原体和模式生物脑膜炎奈瑟菌的研究中,我们构建了一组突变体,这些突变体使参与碱基切除修复、错配修复、核苷酸切除修复(NER)、跨损伤合成和重组修复途径的基因失活。与大肠杆菌中的mutS突变体相反,脑膜炎奈瑟菌单突变体中自发突变频率最高的是MutY缺陷菌株,这表明脑膜炎奈瑟菌MutY在抗生素耐药性发展中发挥作用。重组修复被认为是脑膜炎奈瑟菌中抵消甲磺酸甲酯诱导的烷基化损伤的主要途径。与其他物种的情况不同,脑膜炎奈瑟菌的NER对烷基化诱导的DNA损伤修复没有显著贡献,因此脑膜炎奈瑟菌的重组修复可能是去除DNA中无碱基(脱嘌呤/脱嘧啶)位点和链断裂的主要途径之一。相反地,NER被确定为脑膜炎奈瑟菌抵御紫外线诱导的DNA损伤的主要防御途径。与对紫外线极度敏感的大肠杆菌recA菌株不同,脑膜炎奈瑟菌RecA单突变体在紫外线照射后的存活率仅适度下降,这可能反映出脑膜炎奈瑟菌缺乏SOS反应。总之,我们发现了脑膜炎奈瑟菌与大肠杆菌及其他物种已确定的DNA修复特征之间存在明显差异。

相似文献

2
DNA repair profiles of disease-associated isolates of Neisseria meningitidis.脑膜炎奈瑟菌疾病相关分离株的DNA修复谱
FEMS Immunol Med Microbiol. 2007 Mar;49(2):243-51. doi: 10.1111/j.1574-695X.2006.00195.x. Epub 2007 Jan 26.

引用本文的文献

3
Inhibitors of DNA Glycosylases as Prospective Drugs.DNA 糖苷酶抑制剂作为潜在药物。
Int J Mol Sci. 2020 Apr 28;21(9):3118. doi: 10.3390/ijms21093118.
9
Characterization of the Neisseria meningitidis Helicase RecG.脑膜炎奈瑟菌解旋酶RecG的特性分析
PLoS One. 2016 Oct 13;11(10):e0164588. doi: 10.1371/journal.pone.0164588. eCollection 2016.

本文引用的文献

1
DNA repair profiles of disease-associated isolates of Neisseria meningitidis.脑膜炎奈瑟菌疾病相关分离株的DNA修复谱
FEMS Immunol Med Microbiol. 2007 Mar;49(2):243-51. doi: 10.1111/j.1574-695X.2006.00195.x. Epub 2007 Jan 26.
3
Hypermutable bacteria isolated from humans--a critical analysis.从人类分离出的超突变细菌——批判性分析
Microbiology (Reading). 2006 Sep;152(Pt 9):2505-2514. doi: 10.1099/mic.0.29079-0.
5
Meningococcal genome dynamics.脑膜炎球菌基因组动态变化
Nat Rev Microbiol. 2006 Jan;4(1):11-22. doi: 10.1038/nrmicro1324.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验