Suppr超能文献

溶解氧同位素比率的动态变化:一种用于量化水生生态系统中初级生产、群落呼吸和空气-水交换的瞬态模型。

Dynamics of dissolved oxygen isotopic ratios: a transient model to quantify primary production, community respiration, and air-water exchange in aquatic ecosystems.

作者信息

Venkiteswaran Jason J, Wassenaar Leonard I, Schiff Sherry L

机构信息

Department of Earth Sciences, University of Waterloo, 200 University Avenue W, Waterloo, ON N2L 3G1, Canada.

出版信息

Oecologia. 2007 Aug;153(2):385-98. doi: 10.1007/s00442-007-0744-9. Epub 2007 May 22.

Abstract

Dissolved O(2) is an important aquatic ecosystem health indicator. Metabolic and gas exchange (G) rates, which control O(2) concentration, are affected by nutrient loading and other environmental factors. Traditionally, aquatic metabolism has been reported as primary production:community respiration (P:R) ratios using diel measurements and interpretations of dissolved O(2) and/or CO(2) concentrations, and recently using stable isotopes (delta(18)O, Delta(17)O) and steady state assumptions. Aquatic ecosystems, such as rivers and ponds, are not at steady state and exhibit diel changes, so steady state approaches are often inappropriate. A dynamic O(2) stable isotope model (photosynthesis-respiration-gas exchange; PoRGy) is presented here, requiring a minimum of parameters to quantify daily averaged P, R, and G rates under transient field conditions. Unlike steady state approaches, PoRGy can address scenarios with 100% O(2) saturation but with delta(18)O-O(2) values that are not at air equilibrium. PoRGy successfully accounts for isotopic G when applied to an oxygen isotope equilibration laboratory experiment. PoRGy model results closely matched the diel O(2) and delta(18)O-O(2) data from three field sites with different P:R:G ratios and various P, R and G rates. PoRGy provides a new research tool to assess ecosystem health and to pose environmental impact-driven questions. Using daily averaged rates was successful and thus they can be used to compare ecosystems across seasons and landscapes.

摘要

溶解氧(O₂)是水生生态系统健康状况的重要指标。控制氧气浓度的代谢和气体交换(G)速率受营养物质负荷和其他环境因素的影响。传统上,水生代谢以初级生产与群落呼吸(P:R)比率来表示,通过对溶解氧和/或二氧化碳浓度进行昼夜测量和解读得出,最近也使用稳定同位素(δ¹⁸O、Δ¹⁷O)以及稳态假设。河流和池塘等水生生态系统并非处于稳态,而是呈现出昼夜变化,因此稳态方法往往并不适用。本文提出了一种动态氧稳定同位素模型(光合作用 - 呼吸作用 - 气体交换;PoRGy),该模型只需最少的参数就能在瞬变的野外条件下量化每日平均的P、R和G速率。与稳态方法不同,PoRGy能够处理氧气饱和度为100%但δ¹⁸O - O₂值未达到空气平衡的情况。当应用于氧同位素平衡实验室实验时,PoRGy成功地解释了同位素气体交换。PoRGy模型结果与来自三个具有不同P:R:G比率以及不同P、R和G速率的野外站点的昼夜氧和δ¹⁸O - O₂数据紧密匹配。PoRGy提供了一种新的研究工具,用于评估生态系统健康状况并提出环境影响驱动的问题。使用每日平均速率是成功的,因此它们可用于比较不同季节和不同景观的生态系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验