Department of Information Engineering, University of Padova, Padova, Italy.
Diabetes Technol Ther. 2011 Feb;13(2):111-9. doi: 10.1089/dia.2010.0151.
Continuous glucose monitoring (CGM) data can be exploited to prevent hypo-/hyperglycemic events in real time by forecasting future glucose levels. In the last few years, several glucose prediction algorithms have been proposed, but how to compare them (e.g., methods based on polynomial rather than autoregressive time-series models) and even how to determine the optimal parameter set for a given method (e.g., prediction horizon and forgetting) are open problems.
A new index, J, is proposed to optimally design a prediction algorithm by taking into account two key components: the regularity of the predicted profile and the time gained thanks to prediction. Effectiveness of J is compared with previously proposed criteria such as the root mean square error (RMSE) and continuous glucose-error grid analysis (CG-EGA) on 20 Menarini (Florence, Italy) Glucoday® CGM data sets.
For a given prediction algorithm, the new index J is able to suggest a more consistent and better parameter set (e.g., prediction horizon and forgetting factor of choice) than RMSE and CG-EGA. In addition, the minimization of J can reliably be used as a selection criterion in comparing different prediction methods.
The new index can be used to compare different prediction strategies and to optimally design their parameters.
通过预测未来的血糖水平,连续血糖监测 (CGM) 数据可用于实时预防低血糖/高血糖事件。在过去的几年中,已经提出了几种血糖预测算法,但如何对其进行比较(例如,基于多项式而非自回归时间序列模型的方法),甚至如何确定给定方法的最佳参数集(例如,预测范围和遗忘),这些都是尚未解决的问题。
提出了一个新的指标 J,通过考虑两个关键因素,来优化预测算法的设计:预测曲线的规律性和预测所获得的时间。在 20 个 Menarini(佛罗伦萨,意大利)Glucoday® CGM 数据集上,将新指标 J 的有效性与之前提出的标准(例如均方根误差 (RMSE) 和连续血糖误差网格分析 (CG-EGA))进行了比较。
对于给定的预测算法,新指标 J 能够比 RMSE 和 CG-EGA 建议更一致和更好的参数集(例如,预测范围和选择的遗忘因子)。此外,J 的最小化可以可靠地用作比较不同预测方法的选择标准。
新指标可用于比较不同的预测策略并优化其参数设计。