Suppr超能文献

Boolean factor analysis by attractor neural network.

作者信息

Frolov Alexander A, Husek Dusan, Muraviev Igor P, Polyakov Pavel Yu

机构信息

Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 119991, Russia.

出版信息

IEEE Trans Neural Netw. 2007 May;18(3):698-707. doi: 10.1109/TNN.2007.891664.

Abstract

A common problem encountered in disciplines such as statistics, data analysis, signal processing, textual data representation, and neural network research, is finding a suitable representation of the data in the lower dimension space. One of the principles used for this reason is a factor analysis. In this paper, we show that Hebbian learning and a Hopfield-like neural network could be used for a natural procedure for Boolean factor analysis. To ensure efficient Boolean factor analysis, we propose our original modification not only of Hopfield network architecture but also its dynamics as well. In this paper, we describe neural network implementation of the Boolean factor analysis method. We show the advantages of our Hopfield-like network modification step by step on artificially generated data. At the end, we show the efficiency of the method on artificial data containing a known list of factors. Our approach has the advantage of being able to analyze very large data sets while preserving the nature of the data.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验