Suppr超能文献

一种联想记忆的加权投票模型。

A weighted voting model of associative memory.

作者信息

Mu Xiaoyan, Watta Paul, Hassoun Mohamad H

机构信息

Department of Electrical and Computer Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803, USA.

出版信息

IEEE Trans Neural Netw. 2007 May;18(3):756-77. doi: 10.1109/TNN.2007.891196.

Abstract

This paper presents an analysis of a random access memory (RAM)-based associative memory which uses a weighted voting scheme for information retrieval. This weighted voting memory can operate in heteroassociative or autoassociative mode, can store both real-valued and binary-valued patterns and, unlike memory models, is equipped with a rejection mechanism. A theoretical analysis of the performance of the weighted voting memory is given for the case of binary and random memory sets. Performance measures are derived as a function of the model parameters: pattern size, window size, and number of patterns in the memory set. It is shown that the weighted voting model has large capacity and error correction. The results show that the weighted voting model can successfully achieve high-detection and -identification rates and, simultaneously, low-false-acceptance rates.

摘要

本文介绍了一种基于随机存取存储器(RAM)的联想存储器分析,该存储器使用加权投票方案进行信息检索。这种加权投票存储器可以在异联想或自联想模式下运行,可以存储实值和二进制值模式,并且与其他存储器模型不同,它配备了一种拒绝机制。针对二进制和随机存储器集的情况,给出了加权投票存储器性能的理论分析。性能指标是作为模型参数的函数推导出来的:模式大小、窗口大小和存储器集中的模式数量。结果表明,加权投票模型具有大容量和纠错能力。结果表明,加权投票模型可以成功实现高检测率和识别率,同时实现低误接受率。

相似文献

1
A weighted voting model of associative memory.一种联想记忆的加权投票模型。
IEEE Trans Neural Netw. 2007 May;18(3):756-77. doi: 10.1109/TNN.2007.891196.
2
Sparse distributed memory using rank-order neural codes.使用排序神经编码的稀疏分布式存储器。
IEEE Trans Neural Netw. 2007 May;18(3):648-59. doi: 10.1109/TNN.2006.890804.
7
Associative memory design using support vector machines.使用支持向量机的关联记忆设计。
IEEE Trans Neural Netw. 2006 Sep;17(5):1165-74. doi: 10.1109/TNN.2006.877539.
9
Performance of the Bayesian online algorithm for the perceptron.感知器的贝叶斯在线算法性能
IEEE Trans Neural Netw. 2007 May;18(3):902-5. doi: 10.1109/TNN.2007.891189.
10
Deterministic learning and rapid dynamical pattern recognition.确定性学习与快速动态模式识别。
IEEE Trans Neural Netw. 2007 May;18(3):617-30. doi: 10.1109/TNN.2006.889496.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验