Suppr超能文献

确定性学习与快速动态模式识别。

Deterministic learning and rapid dynamical pattern recognition.

作者信息

Wang Cong, Hill David J

机构信息

College of Automation and the Center for Control and Optimization, South China University of Technology, Guangzhou 510641, PR China.

出版信息

IEEE Trans Neural Netw. 2007 May;18(3):617-30. doi: 10.1109/TNN.2006.889496.

Abstract

Recognition of temporal/dynamical patterns is among the most difficult pattern recognition tasks. In this paper, based on a recent result on deterministic learning theory, a deterministic framework is proposed for rapid recognition of dynamical patterns. First, it is shown that a time-varying dynamical pattern can be effectively represented in a time-invariant and spatially distributed manner through deterministic learning. Second, a definition for characterizing similarity of dynamical patterns is given based on system dynamics inherently within dynamical patterns. Third, a mechanism for rapid recognition of dynamical patterns is presented, by which a test dynamical pattern is recognized as similar to a training dynamical pattern if state synchronization is achieved according to a kind of internal and dynamical matching on system dynamics. The synchronization errors can be taken as the measure of similarity between the test and training patterns. The significance of the paper is that a completely dynamical approach is proposed, in which the problem of dynamical pattern recognition is turned into the stability and convergence of a recognition error system. Simulation studies are included to demonstrate the effectiveness of the proposed approach.

摘要

时间/动态模式识别是最困难的模式识别任务之一。本文基于确定性学习理论的最新成果,提出了一种用于快速识别动态模式的确定性框架。首先,研究表明,通过确定性学习,时变动态模式可以以时不变且空间分布的方式有效表示。其次,基于动态模式固有的系统动力学,给出了表征动态模式相似性的定义。第三,提出了一种快速识别动态模式的机制,根据该机制,如果根据系统动力学上的一种内部动态匹配实现了状态同步,则将测试动态模式识别为与训练动态模式相似。同步误差可作为测试模式与训练模式之间相似性的度量。本文的意义在于提出了一种完全动态的方法,即将动态模式识别问题转化为识别误差系统的稳定性和收敛性问题。文中包含仿真研究以证明所提方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验