Suppr超能文献

基于变分分量分裂的高斯混合无监督学习。

Unsupervised learning of gaussian mixtures based on variational component splitting.

作者信息

Constantinopoulos Constantinos, Likas Aristidis

机构信息

Department of Computer Science, University of Ioannina, GR 45110 Ioannina, Greece.

出版信息

IEEE Trans Neural Netw. 2007 May;18(3):745-55. doi: 10.1109/TNN.2006.891114.

Abstract

In this paper, we present an incremental method for model selection and learning of Gaussian mixtures based on the recently proposed variational Bayes approach. The method adds components to the mixture using a Bayesian splitting test procedure: a component is split into two components and then variational update equations are applied only to the parameters of the two components. As a result, either both components are retained in the model or one of them is found to be redundant and is eliminated from the model. In our approach, the model selection problem is treated locally, in a region of the data space, so we can set more informative priors based on the local data distribution. A modified Bayesian mixture model is presented to implement this approach, along with a learning algorithm that iteratively applies a splitting test on each mixture component. Experimental results and comparisons with two other techniques testify for the adequacy of the proposed approach.

摘要

在本文中,我们基于最近提出的变分贝叶斯方法,提出了一种用于高斯混合模型选择和学习的增量方法。该方法使用贝叶斯分裂测试程序向混合模型中添加组件:将一个组件拆分为两个组件,然后仅对这两个组件的参数应用变分更新方程。结果,要么两个组件都保留在模型中,要么发现其中一个组件是冗余的并从模型中消除。在我们的方法中,模型选择问题在数据空间的一个区域内进行局部处理,因此我们可以根据局部数据分布设置更具信息性的先验。提出了一种改进的贝叶斯混合模型来实现此方法,以及一种对每个混合组件迭代应用分裂测试的学习算法。实验结果以及与其他两种技术的比较证明了所提方法的适用性。

相似文献

2
Performance of the Bayesian online algorithm for the perceptron.感知器的贝叶斯在线算法性能
IEEE Trans Neural Netw. 2007 May;18(3):902-5. doi: 10.1109/TNN.2007.891189.
3
Variational Bayesian approach to canonical correlation analysis.变分贝叶斯方法用于典型相关分析。
IEEE Trans Neural Netw. 2007 May;18(3):905-10. doi: 10.1109/TNN.2007.891186.
4
Bayesian feature and model selection for Gaussian mixture models.高斯混合模型的贝叶斯特征与模型选择
IEEE Trans Pattern Anal Mach Intell. 2006 Jun;28(6):1013-8. doi: 10.1109/TPAMI.2006.111.
9
Bayesian multitask classification with Gaussian process priors.具有高斯过程先验的贝叶斯多任务分类
IEEE Trans Neural Netw. 2011 Dec;22(12):2011-21. doi: 10.1109/TNN.2011.2168568. Epub 2011 Oct 10.
10
Latent-space variational bayes.潜在空间变分贝叶斯
IEEE Trans Pattern Anal Mach Intell. 2008 Dec;30(12):2236-42. doi: 10.1109/TPAMI.2008.157.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验