Suppr超能文献

蛋白质-蛋白质对接中依赖于复合物类型的评分函数

Complex-type-dependent scoring functions in protein-protein docking.

作者信息

Li Chun Hua, Ma Xiao Hui, Shen Long Zhu, Chang Shan, Chen Wei Zu, Wang Cun Xin

机构信息

College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100022, People's Republic of China.

出版信息

Biophys Chem. 2007 Aug;129(1):1-10. doi: 10.1016/j.bpc.2007.04.014. Epub 2007 May 8.

Abstract

A major challenge in the field of protein-protein docking is to discriminate between the many wrong and few near-native conformations, i.e. scoring. Here, we introduce combinatorial complex-type-dependent scoring functions for different types of protein-protein complexes, protease/inhibitor, antibody/antigen, enzyme/inhibitor and others. The scoring functions incorporate both physical and knowledge-based potentials, i.e. atomic contact energy (ACE), the residue pair potential (RP), electrostatic and van der Waals' interactions. For different type complexes, the weights of the scoring functions were optimized by the multiple linear regression method, in which only top 300 structures with ligand root mean square deviation (L_RMSD) less than 20 A from the bound (co-crystallized) docking of 57 complexes were used to construct a training set. We employed the bound docking studies to examine the quality of the scoring function, and also extend to the unbound (separately crystallized) docking studies and extra 8 protein-protein complexes. In bound docking of the 57 cases, the first hits of protease/inhibitor cases are all ranked in the top 5. For the cases of antibody/antigen, enzyme/inhibitor and others, there are 17/19, 5/6 and 13/15 cases with the first hits ranked in the top 10, respectively. In unbound docking studies, the first hits of 9/17 protease/inhibitor, 6/19 antibody/antigen, 1/6 enzyme/inhibitor and 6/15 others' complexes are ranked in the top 10. Additionally, for the extra 8 cases, the first hits of the two protease/inhibitor cases are ranked in the top for the bound and unbound test. For the two enzyme/inhibitor cases, the first hits are ranked 1st for bound test, and the 119th and 17th for the unbound test. For the others, the ranks of the first hits are the 1st for the bound test and the 12th for the 1WQ1 unbound test. To some extent, the results validated our divide-and-conquer strategy in the docking study, which might hopefully shed light on the prediction of protein-protein interactions.

摘要

蛋白质-蛋白质对接领域的一个主要挑战是区分众多错误构象和少数接近天然的构象,即评分。在此,我们针对不同类型的蛋白质-蛋白质复合物,蛋白酶/抑制剂、抗体/抗原、酶/抑制剂等,引入了组合的复合物类型依赖评分函数。这些评分函数结合了物理和基于知识的势能,即原子接触能(ACE)、残基对势能(RP)、静电和范德华相互作用。对于不同类型的复合物,通过多元线性回归方法优化评分函数的权重,其中仅使用57个复合物中与结合(共结晶)对接的配体均方根偏差(L_RMSD)小于20 Å的前300个结构来构建训练集。我们采用结合对接研究来检验评分函数的质量,并将其扩展到未结合(单独结晶)对接研究以及另外8个蛋白质-蛋白质复合物。在57个案例的结合对接中,蛋白酶/抑制剂案例的首次命中结果均排名前5。对于抗体/抗原、酶/抑制剂及其他案例,分别有17/19、5/6和13/15个案例的首次命中结果排名前10。在未结合对接研究中,9/17的蛋白酶/抑制剂、6/19的抗体/抗原、1/6的酶/抑制剂以及6/15的其他复合物的首次命中结果排名前10。此外,对于另外8个案例,两个蛋白酶/抑制剂案例的首次命中结果在结合和未结合测试中均排名靠前。对于两个酶/抑制剂案例,首次命中结果在结合测试中排名第1,在未结合测试中分别排名第119和第17。对于其他案例,首次命中结果在结合测试中排名第1,在1WQ1未结合测试中排名第12。在某种程度上,这些结果验证了我们在对接研究中的分治策略,有望为蛋白质-蛋白质相互作用的预测提供启示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验