Yi Li, Ragsdale Stephen W
Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588-0664, USA.
J Biol Chem. 2007 Jul 20;282(29):21056-67. doi: 10.1074/jbc.M700664200. Epub 2007 May 31.
Heme oxygenase (HO) catalyzes the O(2)- and NADPH-dependent conversion of heme to biliverdin, CO, and iron. The two forms of HO (HO-1 and HO-2) share similar physical properties but are differentially regulated and exhibit dissimilar physiological roles and tissue distributions. Unlike HO-1, HO-2 contains heme regulatory motifs (HRMs) (McCoubrey, W. K., Jr., Huang, T. J., and Maines, M. D. (1997) J. Biol. Chem. 272, 12568-12574). Here we describe UV-visible, EPR, and differential scanning calorimetry experiments on human HO-2 variants containing single, double, and triple mutations in the HRMs. Oxidized HO-2, which contains an intramolecular disulfide bond linking Cys(265) of HRM1 and Cys(282) of HRM2, binds heme tightly. Reduction of the disulfide bond increases the K(d) for ferric heme from 0.03 to 0.3 microm, which is much higher than the concentration of the free heme pool in cells. Although the HRMs markedly affect the K(d) for heme, they do not alter the k(cat) for heme degradation and do not bind additional hemes. Because HO-2 plays a key role in CO generation and heme homeostasis, reduction of the disulfide bond would be expected to increase intracellular free heme and decrease CO concentrations. Thus, we propose that the HRMs in HO-2 constitute a thiol/disulfide redox switch that regulates the myriad physiological functions of HO-2, including its involvement in the hypoxic response in the carotid body, which involves interactions with a Ca(2+)-activated potassium channel.
血红素加氧酶(HO)催化血红素在氧气和NADPH依赖的条件下转化为胆绿素、一氧化碳和铁。HO的两种形式(HO-1和HO-2)具有相似的物理性质,但调控方式不同,生理作用和组织分布也不相同。与HO-1不同,HO-2含有血红素调节基序(HRM)(小麦库布雷,W.K.,黄,T.J.,和梅因斯,M.D.(1997年)《生物化学杂志》272卷,12568 - 12574页)。在此,我们描述了对HRM中含有单、双、三突变的人HO-2变体进行的紫外可见光谱、电子顺磁共振和差示扫描量热法实验。氧化型HO-2含有一个分子内二硫键,连接HRM1的半胱氨酸(Cys)(265)和HRM2的半胱氨酸(Cys)(282),能紧密结合血红素。二硫键的还原使三价铁血红素的解离常数(K(d))从0.03增加到0.3微摩尔,这远高于细胞中游离血红素池的浓度。尽管HRM显著影响血红素的K(d),但它们不改变血红素降解的催化常数(k(cat)),也不结合额外的血红素。由于HO-2在一氧化碳生成和血红素稳态中起关键作用,二硫键的还原预计会增加细胞内游离血红素并降低一氧化碳浓度。因此,我们提出HO-2中的HRM构成一个硫醇/二硫键氧化还原开关,调节HO-2的众多生理功能,包括其参与颈动脉体的低氧反应,该反应涉及与钙激活钾通道的相互作用。