Ochoa Sara V, Otero Liliana, Aristizabal-Pachon Andres Felipe, Hinostroza Fernando, Carvacho Ingrid, Torres Yolima P
Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
Semillero de Investigación, Biofísica y Fisiología de Canales Iónicos, Pontificia Universidad Javeriana, Bogotá, Colombia.
Front Physiol. 2021 Dec 22;12:780206. doi: 10.3389/fphys.2021.780206. eCollection 2021.
Hypoxia is a condition characterized by a reduction of cellular oxygen levels derived from alterations in oxygen balance. Hypoxic events trigger changes in cell-signaling cascades, oxidative stress, activation of pro-inflammatory molecules, and growth factors, influencing the activity of various ion channel families and leading to diverse cardiovascular diseases such as myocardial infarction, ischemic stroke, and hypertension. The large-conductance, calcium and voltage-activated potassium channel (BK) has a central role in the mechanism of oxygen (O) sensing and its activity has been related to the hypoxic response. BK channels are ubiquitously expressed, and they are composed by the pore-forming α subunit and the regulatory subunits β (β1-β4), γ (γ1-γ4), and LINGO1. The modification of biophysical properties of BK channels by β subunits underly a myriad of physiological function of these proteins. Hypoxia induces tissue-specific modifications of BK channel α and β subunits expression. Moreover, hypoxia modifies channel activation kinetics and voltage and/or calcium dependence. The reported effects on the BK channel properties are associated with events such as the increase of reactive oxygen species (ROS) production, increases of intracellular Calcium ([Ca]), the regulation by Hypoxia-inducible factor 1α (HIF-1α), and the interaction with hemeproteins. Bronchial asthma, chronic obstructive pulmonary diseases (COPD), and obstructive sleep apnea (OSA), among others, can provoke hypoxia. Untreated OSA patients showed a decrease in BK-β1 subunit mRNA levels and high arterial tension. Treatment with continuous positive airway pressure (CPAP) upregulated β1 subunit mRNA level, decreased arterial pressures, and improved endothelial function coupled with a reduction in morbidity and mortality associated with OSA. These reports suggest that the BK channel has a role in the response involved in hypoxia-associated hypertension derived from OSA. Thus, this review aims to describe the mechanisms involved in the BK channel activation after a hypoxic stimulus and their relationship with disorders like OSA. A deep understanding of the molecular mechanism involved in hypoxic response may help in the therapeutic approaches to treat the pathological processes associated with diseases involving cellular hypoxia.
缺氧是一种因氧平衡改变导致细胞氧水平降低的状态。缺氧事件会引发细胞信号级联反应、氧化应激、促炎分子和生长因子的激活,影响各种离子通道家族的活性,并导致多种心血管疾病,如心肌梗死、缺血性中风和高血压。大电导钙和电压激活钾通道(BK)在氧(O)感知机制中起核心作用,其活性与缺氧反应有关。BK通道广泛表达,由形成孔道的α亚基和调节亚基β(β1-β4)、γ(γ1-γ4)和LINGO1组成。β亚基对BK通道生物物理特性的修饰是这些蛋白质众多生理功能的基础。缺氧诱导BK通道α和β亚基表达的组织特异性修饰。此外,缺氧会改变通道激活动力学以及电压和/或钙依赖性。报道的对BK通道特性的影响与活性氧(ROS)产生增加、细胞内钙([Ca])增加、缺氧诱导因子1α(HIF-1α)的调节以及与血红素蛋白的相互作用等事件有关。支气管哮喘、慢性阻塞性肺疾病(COPD)和阻塞性睡眠呼吸暂停(OSA)等疾病可引发缺氧。未经治疗的OSA患者BK-β1亚基mRNA水平降低且动脉血压升高。持续气道正压通气(CPAP)治疗可上调β1亚基mRNA水平,降低动脉血压,并改善内皮功能,同时降低与OSA相关的发病率和死亡率。这些报告表明,BK通道在OSA所致缺氧相关性高血压的反应中起作用。因此,本综述旨在描述缺氧刺激后BK通道激活所涉及的机制及其与OSA等疾病的关系。深入了解缺氧反应所涉及的分子机制可能有助于治疗与细胞缺氧相关疾病的病理过程的治疗方法。