Suppr超能文献

嗜热栖热菌的非磷酸化甘油醛-3-磷酸脱氢酶(GAPN):恩特纳-杜德洛夫途径半磷酸化分支的关键酶。

The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) of Sulfolobus solfataricus: a key-enzyme of the semi-phosphorylative branch of the Entner-Doudoroff pathway.

作者信息

Ettema Thijs J G, Ahmed Hatim, Geerling Ans C M, van der Oost John, Siebers Bettina

机构信息

Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, Norbyvägen 18C, 752 36 Uppsala, Sweden.

出版信息

Extremophiles. 2008 Jan;12(1):75-88. doi: 10.1007/s00792-007-0082-1. Epub 2007 Jun 5.

Abstract

Archaea utilize a branched modification of the classical Entner-Doudoroff (ED) pathway for sugar degradation. The semi-phosphorylative branch merges at the level of glyceraldehyde 3-phosphate (GAP) with the lower common shunt of the Emden-Meyerhof-Parnas pathway. In Sulfolobus solfataricus two different GAP converting enzymes-classical phosphorylating GAP dehydrogenase (GAPDH) and the non-phosphorylating GAPDH (GAPN)-were identified. In Sulfolobales the GAPN encoding gene is found adjacent to the ED gene cluster suggesting a function in the regulation of the semi-phosphorylative ED branch. The biochemical characterization of the recombinant GAPN of S. solfataricus revealed that-like the well-characterized GAPN from Thermoproteus tenax-the enzyme of S. solfataricus exhibits allosteric properties. However, both enzymes show some unexpected differences in co-substrate specificity as well as regulatory fine-tuning, which seem to reflect an adaptation to the different lifestyles of both organisms. Phylogenetic analyses and database searches in Archaea indicated a preferred distribution of GAPN (and/or GAP oxidoreductase) in hyperthermophilic Archaea supporting the previously suggested role of GAPN in metabolic thermoadaptation. This work suggests an important role of GAPN in the regulation of carbon degradation via modifications of the EMP and the branched ED pathway in hyperthermophilic Archaea.

摘要

古菌利用经典的恩特纳-杜德洛夫(ED)途径的一种分支修饰来进行糖降解。半磷酸化分支在3-磷酸甘油醛(GAP)水平与糖酵解途径的下游共同分流途径合并。在嗜热栖热菌中,鉴定出了两种不同的GAP转化酶——经典的磷酸化GAP脱氢酶(GAPDH)和非磷酸化GAPDH(GAPN)。在硫化叶菌目中,发现编码GAPN的基因与ED基因簇相邻,这表明其在半磷酸化ED分支的调控中发挥作用。嗜热栖热菌重组GAPN的生化特性表明,与已充分表征的嗜热栖热袍菌的GAPN一样,嗜热栖热菌的这种酶具有变构特性。然而,这两种酶在共底物特异性以及调控微调方面都表现出一些意外的差异,这似乎反映了它们对两种生物体不同生活方式的适应。古菌的系统发育分析和数据库搜索表明,GAPN(和/或GAP氧化还原酶)在嗜热古菌中分布较为普遍,这支持了之前提出的GAPN在代谢热适应中的作用。这项工作表明,GAPN在嗜热古菌中通过对糖酵解途径和分支ED途径的修饰来调控碳降解方面发挥着重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验