Suppr超能文献

获得一个天然抗性基因使耐甲氧西林金黄色葡萄球菌的临床菌株对合成抗生素利奈唑胺产生抗性。

Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid.

作者信息

Toh Seok-Ming, Xiong Liqun, Arias Cesar A, Villegas Maria V, Lolans Karen, Quinn John, Mankin Alexander S

机构信息

Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, IL 60607, USA.

出版信息

Mol Microbiol. 2007 Jun;64(6):1506-14. doi: 10.1111/j.1365-2958.2007.05744.x.

Abstract

Linezolid, which targets the ribosome, is a new synthetic antibiotic that is used for treatment of infections caused by Gram-positive pathogens. Clinical resistance to linezolid, so far, has been developing only slowly and has involved exclusively target site mutations. We have discovered that linezolid resistance in a methicillin-resistant Staphylococcus aureus hospital strain from Colombia is determined by the presence of the cfr gene whose product, Cfr methyltransferase, modifies adenosine at position 2503 in 23S rRNA in the large ribosomal subunit. The molecular model of the linezolid-ribosome complex reveals localization of A2503 within the drug binding site. The natural function of cfr likely involves protection against natural antibiotics whose site of action overlaps that of linezolid. In the chromosome of the clinical strain, cfr is linked to ermB, a gene responsible for dimethylation of A2058 in 23S rRNA. Coexpression of these two genes confers resistance to all the clinically relevant antibiotics that target the large ribosomal subunit. The association of the ermB/cfr operon with transposon and plasmid genetic elements indicates its possible mobile nature. This is the first example of clinical resistance to the synthetic drug linezolid which involves a natural resistance gene with the capability of disseminating among Gram-positive pathogenic strains.

摘要

利奈唑胺是一种新型合成抗生素,作用于核糖体,用于治疗革兰氏阳性病原体引起的感染。到目前为止,对利奈唑胺的临床耐药性发展缓慢,且仅涉及靶位点突变。我们发现,来自哥伦比亚的一株耐甲氧西林金黄色葡萄球菌医院菌株对利奈唑胺的耐药性是由cfr基因的存在所决定的,该基因的产物Cfr甲基转移酶可修饰大核糖体亚基23S rRNA中第2503位的腺苷。利奈唑胺-核糖体复合物的分子模型显示A2503位于药物结合位点内。cfr的天然功能可能涉及对天然抗生素的保护,这些天然抗生素的作用位点与利奈唑胺的作用位点重叠。在临床菌株的染色体中,cfr与ermB相连,ermB是一个负责23S rRNA中A2058二甲基化 的基因。这两个基因的共表达赋予了对所有靶向大核糖体亚基的临床相关抗生素的耐药性。ermB/cfr操纵子与转座子和质粒遗传元件的关联表明其可能具有移动性。这是合成药物利奈唑胺临床耐药性的首个实例,其涉及一种能够在革兰氏阳性致病菌株中传播的天然耐药基因。

相似文献

2
Clinical and microbiological aspects of linezolid resistance mediated by the cfr gene encoding a 23S rRNA methyltransferase.
J Clin Microbiol. 2008 Mar;46(3):892-6. doi: 10.1128/JCM.01886-07. Epub 2008 Jan 3.
3
Low fitness cost of the multidrug resistance gene cfr.
Antimicrob Agents Chemother. 2011 Aug;55(8):3714-9. doi: 10.1128/AAC.00153-11. Epub 2011 Jun 6.
4
Genetic environment and stability of cfr in methicillin-resistant Staphylococcus aureus CM05.
Antimicrob Agents Chemother. 2012 Jan;56(1):332-40. doi: 10.1128/AAC.05420-11. Epub 2011 Oct 24.
5
First report of cfr-mediated resistance to linezolid in human staphylococcal clinical isolates recovered in the United States.
Antimicrob Agents Chemother. 2008 Jun;52(6):2244-6. doi: 10.1128/AAC.00231-08. Epub 2008 Apr 7.
6
Linezolid resistance in Staphylococcus aureus: characterization and stability of resistant phenotype.
J Infect Dis. 2002 Dec 1;186(11):1603-7. doi: 10.1086/345368. Epub 2002 Nov 4.
9
Tedizolid for the management of human infections: in vitro characteristics.
Clin Infect Dis. 2014 Jan;58 Suppl 1:S35-42. doi: 10.1093/cid/cit616.
10
Persistence of rRNA operon mutated copies and rapid re-emergence of linezolid resistance in Staphylococcus aureus.
J Antimicrob Chemother. 2007 Sep;60(3):649-51. doi: 10.1093/jac/dkm246. Epub 2007 Jul 10.

引用本文的文献

1
Beyond antibiotics: exploring multifaceted approaches to combat bacterial resistance in the modern era: a comprehensive review.
Front Cell Infect Microbiol. 2025 Mar 18;15:1493915. doi: 10.3389/fcimb.2025.1493915. eCollection 2025.
2
Discovery of a fluorinated macrobicyclic antibiotic through chemical synthesis.
Nat Chem. 2025 Apr;17(4):582-589. doi: 10.1038/s41557-025-01738-7. Epub 2025 Mar 7.
5
: insights into epidemiology, virulence, and antimicrobial resistance of a clinically relevant bacterial species.
Clin Microbiol Rev. 2024 Sep 12;37(3):e0011823. doi: 10.1128/cmr.00118-23. Epub 2024 Jun 20.
7
Antimicrobial Resistance and the Prevalence of the Panton-Valentine Leukocidin Gene among Clinical Isolates of in Lithuania.
Pol J Microbiol. 2024 Mar 4;73(1):21-28. doi: 10.33073/pjm-2024-003. eCollection 2024 Mar 1.
8
An antibiotic preorganized for ribosomal binding overcomes antimicrobial resistance.
Science. 2024 Feb 16;383(6684):721-726. doi: 10.1126/science.adk8013. Epub 2024 Feb 15.
9
Epitranscriptional m6A modification of rRNA negatively impacts translation and host colonization in Staphylococcus aureus.
PLoS Pathog. 2024 Jan 22;20(1):e1011968. doi: 10.1371/journal.ppat.1011968. eCollection 2024 Jan.
10
Structural basis of Cfr-mediated antimicrobial resistance and mechanisms to evade it.
Nat Chem Biol. 2024 Jul;20(7):867-876. doi: 10.1038/s41589-023-01525-w. Epub 2024 Jan 18.

本文引用的文献

1
The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria.
Mol Cell. 2007 May 11;26(3):393-402. doi: 10.1016/j.molcel.2007.04.005.
2
Characterization of macrolide resistance in Gram-positive cocci from Colombian hospitals: a countrywide surveillance.
Int J Infect Dis. 2007 Jul;11(4):329-36. doi: 10.1016/j.ijid.2006.09.005. Epub 2007 Feb 21.
3
IS21-558 insertion sequences are involved in the mobility of the multiresistance gene cfr.
Antimicrob Agents Chemother. 2007 Feb;51(2):483-7. doi: 10.1128/AAC.01340-06. Epub 2006 Dec 4.
4
The worldwide emergence of plasmid-mediated quinolone resistance.
Lancet Infect Dis. 2006 Oct;6(10):629-40. doi: 10.1016/S1473-3099(06)70599-0.
5
Structure of the 70S ribosome complexed with mRNA and tRNA.
Science. 2006 Sep 29;313(5795):1935-42. doi: 10.1126/science.1131127. Epub 2006 Sep 7.
7
Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates.
Antimicrob Agents Chemother. 2006 Apr;50(4):1156-63. doi: 10.1128/AAC.50.4.1156-1163.2006.
8
Structures of the bacterial ribosome at 3.5 A resolution.
Science. 2005 Nov 4;310(5749):827-34. doi: 10.1126/science.1117230.
9
The bacterial ribosome as a target for antibiotics.
Nat Rev Microbiol. 2005 Nov;3(11):870-81. doi: 10.1038/nrmicro1265.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验