Suppr超能文献

在线粒体通透性转换之前,锌会不可逆地损害能量产生和抗氧化防御的主要酶。

Zinc irreversibly damages major enzymes of energy production and antioxidant defense prior to mitochondrial permeability transition.

作者信息

Gazaryan Irina G, Krasinskaya Inna P, Kristal Bruce S, Brown Abraham M

机构信息

Burke Medical Research Institute, White Plains, New York 10605, USA.

出版信息

J Biol Chem. 2007 Aug 17;282(33):24373-80. doi: 10.1074/jbc.M611376200. Epub 2007 Jun 12.

Abstract

Recent observations point to the role played by Zn2+ as an inducer of neuronal death. Two Zn2+ targets have been identified that result in inhibition of mitochondrial respiration: the bc1 center and, more recently, alpha-ketoglutarate dehydrogenase. Zn2+ is also a mediator of oxidative stress, leading to mitochondrial failure, release of apoptotic peptides, and neuronal death. We now present evidence, by means of direct biochemical assays, that Zn2+ is imported through the Ca2+ uniporter and directly targets major enzymes of energy production (lipoamide dehydrogenase) and antioxidant defense (thioredoxin reductase and glutathione reductase). We demonstrate the following. (a) These matrix enzymes are rapidly inhibited by application of Zn2+ to intact mitochondria. (b) Delayed treatment with membrane-impermeable chelators has no effect, indicating rapid transport of biologically relevant quantities of Zn2+ into the matrix. (c) Membrane-permeable chelators stop but do not reverse enzyme inactivation. (d) Enzyme inhibition is rapid and irreversible and precedes the major changes associated with the mitochondrial permeability transition (MPT). (e) The extent and rate of enzyme inactivation linearly correlates with the MPT onset and propagation. (f) The Ca2+ uniporter blocker, Ruthenium Red, protects enzyme activities and delays pore opening up to 2 microm Zn2+. An additional, unidentified import route functions at higher Zn2+ concentrations. (g) No enzyme inactivation is observed for Ca2+-induced MPT. These observations strongly suggest that, unlike Ca2+, exogenous Zn2+ interferes with mitochondrial NADH production and directly alters redox protection in the matrix, contributing to mitochondrial dysfunction. Inactivation of these enzymes by Zn2+ is irreversible, and thus only their de novo synthesis can restore function, which may underlie persistent loss of oxidative carbohydrate metabolism following transient ischemia.

摘要

最近的观察结果表明锌离子(Zn2+)作为神经元死亡诱导剂所起的作用。已确定了两个导致线粒体呼吸抑制的Zn2+靶点:bc1复合体,以及最近发现的α-酮戊二酸脱氢酶。Zn2+还是氧化应激的介质,导致线粒体功能衰竭、凋亡肽释放和神经元死亡。我们现在通过直接生化测定法提供证据,表明Zn2+通过钙离子单向转运体导入,并直接作用于能量产生的主要酶(硫辛酰胺脱氢酶)和抗氧化防御酶(硫氧还蛋白还原酶和谷胱甘肽还原酶)。我们证明了以下几点。(a)向完整线粒体施加Zn2+会迅速抑制这些基质酶。(b)用膜不可渗透的螯合剂进行延迟处理没有效果,这表明具有生物学相关性的Zn2+量会迅速转运到基质中。(c)膜可渗透的螯合剂可阻止但不能逆转酶的失活。(d)酶抑制迅速且不可逆,并且先于与线粒体通透性转换(MPT)相关的主要变化。(e)酶失活的程度和速率与MPT的开始和传播呈线性相关。(f)钙离子单向转运体阻滞剂钌红可保护酶活性,并将孔开放延迟至2微摩尔Zn2+。在更高的Zn2+浓度下,存在另一条未确定的导入途径。(g)对于钙离子诱导的MPT未观察到酶失活。这些观察结果强烈表明,与钙离子不同,外源性Zn2+会干扰线粒体NADH的产生,并直接改变基质中的氧化还原保护,导致线粒体功能障碍。Zn2+对这些酶的失活是不可逆的,因此只有它们的重新合成才能恢复功能,这可能是短暂性缺血后氧化碳水化合物代谢持续丧失的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验