Suppr超能文献

将纳米级有序结构引入设计的蛋白质纤维中。

Engineering nanoscale order into a designed protein fiber.

作者信息

Papapostolou David, Smith Andrew M, Atkins Edward D T, Oliver Seb J, Ryadnov Maxim G, Serpell Louise C, Woolfson Derek N

机构信息

School of Chemistry, University of Bristol, Bristol BS 8 1TS, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):10853-8. doi: 10.1073/pnas.0700801104. Epub 2007 Jun 13.

Abstract

We have established a designed system comprising two peptides that coassemble to form long, thickened protein fibers in water. This system can be rationally engineered to alter fiber assembly, stability, and morphology. Here, we show that rational mutations to our original peptide designs lead to structures with a remarkable level of order on the nanoscale that mimics certain natural fibrous assemblies. In the engineered system, the peptides assemble into two-stranded alpha-helical coiled-coil rods, which pack in axial register in a 3D hexagonal lattice of size 1.824 nm, and with a periodicity of 4.2 nm along the fiber axis. This model is supported by both electron microscopy and x-ray diffraction. Specifically, the fibers display surface striations separated by nanoscale distances that precisely match the 4.2-nm length expected for peptides configured as alpha-helices as designed. These patterns extend unbroken across the widths (>/=50 nm) and lengths (>10 microm) of the fibers. Furthermore, the spacing of the striations can be altered predictably by changing the length of the peptides. These features reflect a high level of internal order within the fibers introduced by the peptide-design process. To our knowledge, this exceptional order, and its persistence along and across the fibers, is unique in a biomimetic system. This work represents a step toward rational bottom-up assembly of nanostructured fibrous biomaterials for potential applications in synthetic biology and nanobiotechnology.

摘要

我们建立了一个设计系统,该系统由两种肽组成,它们在水中共同组装形成长而加粗的蛋白质纤维。这个系统可以通过合理设计来改变纤维的组装、稳定性和形态。在这里,我们表明,对原始肽设计进行合理突变会导致在纳米尺度上具有显著有序水平的结构,这些结构模仿了某些天然纤维组件。在工程系统中,肽组装成两链α-螺旋卷曲螺旋棒,它们以轴向对齐的方式堆积在尺寸为1.824纳米的三维六边形晶格中,并且沿着纤维轴具有4.2纳米的周期性。这一模型得到了电子显微镜和X射线衍射的支持。具体而言,纤维显示出由纳米级距离隔开的表面条纹,这些条纹与设计为α-螺旋的肽预期的4.2纳米长度精确匹配。这些图案在纤维的宽度(≥50纳米)和长度(>10微米)上连续延伸。此外,通过改变肽的长度,可以可预测地改变条纹的间距。这些特征反映了肽设计过程在纤维内部引入的高度有序性。据我们所知,这种特殊的有序性及其在纤维上和纤维内的持久性在仿生系统中是独一无二的。这项工作朝着合理的自下而上组装纳米结构纤维生物材料迈出了一步,有望应用于合成生物学和纳米生物技术。

相似文献

1
Engineering nanoscale order into a designed protein fiber.
Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):10853-8. doi: 10.1073/pnas.0700801104. Epub 2007 Jun 13.
2
Rational design of peptide-based building blocks for nanoscience and synthetic biology.
Faraday Discuss. 2009;143:305-17; discussion 359-72. doi: 10.1039/b901610d.
3
Identifying the Coiled-Coil Triple Helix Structure of β-Peptide Nanofibers at Atomic Resolution.
ACS Nano. 2018 Sep 25;12(9):9101-9109. doi: 10.1021/acsnano.8b03131. Epub 2018 Aug 31.
4
Cryo-transmission electron microscopy structure of a gigadalton peptide fiber of de novo design.
Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):13266-71. doi: 10.1073/pnas.1118622109. Epub 2012 Jul 30.
5
MagicWand: a single, designed peptide that assembles to stable, ordered alpha-helical fibers.
Biochemistry. 2008 Sep 30;47(39):10365-71. doi: 10.1021/bi801072s. Epub 2008 Sep 4.
6
Shape-specific nanostructured protein mimics from de novo designed chimeric peptides.
Biomater Sci. 2018 Jan 30;6(2):272-279. doi: 10.1039/c7bm00906b.
7
Assembly pathway of a designed alpha-helical protein fiber.
Biophys J. 2010 Apr 21;98(8):1668-76. doi: 10.1016/j.bpj.2009.12.4309.
8
Molecular self-assembly into one-dimensional nanostructures.
Acc Chem Res. 2008 Dec;41(12):1674-84. doi: 10.1021/ar8000926.
9
Engineered coiled-coil protein microfibers.
Biomacromolecules. 2014 Oct 13;15(10):3503-10. doi: 10.1021/bm5004948. Epub 2014 Oct 2.
10
Sticky-end assembly of a designed peptide fiber provides insight into protein fibrillogenesis.
Biochemistry. 2000 Aug 1;39(30):8728-34. doi: 10.1021/bi000246g.

引用本文的文献

1
Recent research of peptide-based hydrogel in nervous regeneration.
Bioact Mater. 2024 Jun 29;40:503-523. doi: 10.1016/j.bioactmat.2024.06.013. eCollection 2024 Oct.
2
DRGD-linked charged EKKE dimeric dodecapeptide: pH-based amyloid nanostructures and their application in lead and uranium binding.
RSC Adv. 2024 Mar 19;14(13):9200-9217. doi: 10.1039/d3ra08261j. eCollection 2024 Mar 14.
3
Peptide-Mediated Nanocarriers for Targeted Drug Delivery: Developments and Strategies.
Pharmaceutics. 2024 Feb 6;16(2):240. doi: 10.3390/pharmaceutics16020240.
4
Extracellular matrix type 0: From ancient collagen lineage to a versatile product pipeline - JellaGel™.
Mater Today Bio. 2023 Aug 29;22:100786. doi: 10.1016/j.mtbio.2023.100786. eCollection 2023 Oct.
5
Towards rational computational peptide design.
Front Bioinform. 2022 Oct 21;2:1046493. doi: 10.3389/fbinf.2022.1046493. eCollection 2022.
6
Cyanine Dye Coupling Mediates Self-assembly of a pH Sensitive Peptide into Novel 3D Architectures.
Angew Chem Int Ed Engl. 2022 Nov 25;61(48):e202208647. doi: 10.1002/anie.202208647. Epub 2022 Oct 26.
8
Rational Design of Peptide-based Smart Hydrogels for Therapeutic Applications.
Front Chem. 2021 Nov 16;9:770102. doi: 10.3389/fchem.2021.770102. eCollection 2021.
9
Fibrous Scaffolds From Elastin-Based Materials.
Front Bioeng Biotechnol. 2021 Jul 16;9:652384. doi: 10.3389/fbioe.2021.652384. eCollection 2021.
10
Recent advances in design and applications of biomimetic self-assembled peptide hydrogels for hard tissue regeneration.
Biodes Manuf. 2021;4(4):735-756. doi: 10.1007/s42242-021-00149-0. Epub 2021 Jul 20.

本文引用的文献

1
Peptide-based fibrous biomaterials: Some things old, new and borrowed.
Curr Opin Chem Biol. 2006 Dec;10(6):559-67. doi: 10.1016/j.cbpa.2006.09.019. Epub 2006 Oct 9.
2
The architectonics of programmable RNA and DNA nanostructures.
Curr Opin Struct Biol. 2006 Aug;16(4):531-43. doi: 10.1016/j.sbi.2006.07.001. Epub 2006 Jul 14.
3
Rational design of a reversible pH-responsive switch for peptide self-assembly.
J Am Chem Soc. 2006 May 31;128(21):6770-1. doi: 10.1021/ja0605974.
4
MaP peptides: programming the self-assembly of peptide-based mesoscopic matrices.
J Am Chem Soc. 2005 Sep 7;127(35):12407-15. doi: 10.1021/ja052972i.
5
Toward the development of peptide nanofilaments and nanoropes as smart materials.
Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12656-61. doi: 10.1073/pnas.0505871102. Epub 2005 Aug 29.
6
Peptides as novel smart materials.
Curr Opin Struct Biol. 2005 Aug;15(4):453-63. doi: 10.1016/j.sbi.2005.07.005.
7
Protein fibers as performance proteins: new technologies and applications.
Curr Opin Biotechnol. 2005 Aug;16(4):427-33. doi: 10.1016/j.copbio.2005.05.005.
8
Fibrinogen and fibrin.
Adv Protein Chem. 2005;70:247-99. doi: 10.1016/S0065-3233(05)70008-5.
9
The design of coiled-coil structures and assemblies.
Adv Protein Chem. 2005;70:79-112. doi: 10.1016/S0065-3233(05)70004-8.
10
The structure of alpha-helical coiled coils.
Adv Protein Chem. 2005;70:37-78. doi: 10.1016/S0065-3233(05)70003-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验