Selemidis Stavros, Dusting Gregory J, Peshavariya Hitesh, Kemp-Harper Barbara K, Drummond Grant R
Bernard O'Brien Institute of Microsurgery, University of Melbourne, Fitzroy, Victoria 3065, Australia.
Cardiovasc Res. 2007 Jul 15;75(2):349-58. doi: 10.1016/j.cardiores.2007.03.030. Epub 2007 Apr 21.
Endothelial NADPH oxidase is a major source of superoxide in blood vessels and is implicated in the oxidative stress accompanying vascular diseases, including atherosclerosis. Here we investigate the regulation of NADPH oxidase activity by nitric oxide (NO).
Human cultured microvascular endothelial cells (HMEC-1) were treated with the NO donors, diethylenetriamine (DETA)-NONOate, S-nitroso-N-acetylpenicillamine (SNAP) or sodium nitroprusside (SNP) for 0.5-24 h. Superoxide production was measured by lucigenin chemiluminescence and dihydroethidium fluorescence, while NADPH oxidase subunit expression was measured via Western blotting. S-nitrosylation was assessed using the 2,3-diaminonapthalene (DAN) assay, and via immunoblotting with an anti-nitrosocysteine antibody.
Specific siRNA reduced Nox2 and Nox4 protein expression and markedly decreased superoxide production in HMEC-1. DETA-NONOate (10-300 micromol/L) suppressed superoxide production in HMEC-1 in a concentration- and time-dependent manner, which was not entirely attributable to stoichiometric reaction with NO, for the effect was observed more than 6 h after removing DETA-NONOate from solution. Similarly, sustained attenuation of superoxide production was achieved with SNP (10-100 micromol/L) and SNAP (10-100 micromol/L). The suppressive effect of NO was not dependent on (1) the sGC/cGMP/PKG pathway, (2) peroxynitrite-formation, (3) reduced protein expression of NADPH oxidase subunits or (4) dissociation of NADPH oxidase subunits. Treatment with NO caused S-nitrosylation of the crucial organizer subunit p47phox, and de-nitrosylation with UV light restored superoxide production.
NO causes sustained suppression of NADPH oxidase-dependent superoxide production in human endothelial cells by S-nitrosylation of p47phox. These findings highlight a novel approach by which vascular oxidative stress might be suppressed by NO donors.
内皮型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶是血管中超氧化物的主要来源,与包括动脉粥样硬化在内的血管疾病所伴随的氧化应激有关。在此,我们研究一氧化氮(NO)对NADPH氧化酶活性的调节作用。
用NO供体二乙三胺(DETA)-NONOate、S-亚硝基-N-乙酰青霉胺(SNAP)或硝普钠(SNP)处理人培养微血管内皮细胞(HMEC-1)0.5 - 24小时。通过光泽精化学发光法和二氢乙锭荧光法测定超氧化物的产生,同时通过蛋白质印迹法测定NADPH氧化酶亚基的表达。使用2,3 - 二氨基萘(DAN)测定法以及用抗亚硝基半胱氨酸抗体进行免疫印迹来评估亚硝基化。
特异性小干扰RNA(siRNA)降低了HMEC-1中Nox2和Nox4蛋白的表达,并显著降低了超氧化物的产生。DETA-NONOate(10 - 300微摩尔/升)以浓度和时间依赖性方式抑制HMEC-1中超氧化物的产生,这并不完全归因于与NO的化学计量反应,因为在从溶液中去除DETA-NONOate 6小时后仍观察到该效应。同样,SNP(10 - 100微摩尔/升)和SNAP(10 - 100微摩尔/升)也实现了超氧化物产生的持续减弱。NO的抑制作用不依赖于(1)可溶性鸟苷酸环化酶(sGC)/环磷酸鸟苷(cGMP)/蛋白激酶G(PKG)途径,(2)过氧亚硝酸盐的形成,(3)NADPH氧化酶亚基蛋白表达的降低或(4)NADPH氧化酶亚基的解离。用NO处理导致关键组织者亚基p47phox发生亚硝基化,而紫外线脱亚硝基化可恢复超氧化物的产生。
NO通过p47phox的亚硝基化导致人内皮细胞中NADPH氧化酶依赖性超氧化物产生的持续抑制。这些发现突出了一种新的方法,即NO供体可能通过该方法抑制血管氧化应激。