Suppr超能文献

基于小金属伴侣蛋白支架模拟铜单加氧酶 M 中心组氨酸-蛋氨酸位点的合理设计。

Rational Design of a Histidine-Methionine Site Modeling the M-Center of Copper Monooxygenases in a Small Metallochaperone Scaffold.

机构信息

Department of Chemical Physiology and Biochemistry , Oregon Health & Sciences University , Portland , Oregon 97239 , United States.

出版信息

Biochemistry. 2019 Jul 16;58(28):3097-3108. doi: 10.1021/acs.biochem.9b00312. Epub 2019 Jun 27.

Abstract

Mononuclear copper monooxygenases peptidylglycine monooxygenase (PHM) and dopamine β-monooxygenase (DBM) catalyze the hydroxylation of high energy C-H bonds utilizing a pair of chemically distinct copper sites (CuH and CuM) separated by 11 Å. In earlier work, we constructed single-site PHM variants that were designed to allow the study of the M- and H-centers independently in order to place their reactivity sequentially along the catalytic pathway. More recent crystallographic studies suggest that these single-site variants may not be truly representative of the individual active sites. In this work, we describe an alternative approach that uses a rational design to construct an artificial PHM model in a small metallochaperone scaffold. Using site-directed mutagenesis, we constructed variants that provide a HisMet copper-binding ligand set that mimics the M-center of PHM. The results show that the model accurately reproduces the chemical and spectroscopic properties of the M-center, including details of the methionine coordination, and the properties of Cu(I) and Cu(II) states in the presence of endogenous ligands such as CO and azide. The rate of reduction of the Cu(II) form of the model by the chromophoric reductant ,'-dimethyl phenylenediamine (DMPD) has been compared with that of the PHM M-center, and the reaction chemistry of the Cu(I) forms with molecular oxygen has also been explored, revealing an unusually low reactivity toward molecular oxygen. This latter finding emphasizes the importance of substrate triggering of oxygen reactivity and implies that the HisMet ligand set, while necessary, is insufficient on its own to activate oxygen in these enzyme systems.

摘要

单体铜单加氧酶肽基甘氨酸单加氧酶 (PHM) 和多巴胺 β-单加氧酶 (DBM) 利用一对化学性质不同的铜位点 (CuH 和 CuM) 催化高能 C-H 键的羟化,这两个铜位点之间的距离为 11 Å。在早期的工作中,我们构建了单一位点 PHM 变体,旨在允许独立研究 M 和 H 中心,以便沿着催化途径依次放置它们的反应性。最近的晶体学研究表明,这些单一位点变体可能不能真正代表单个活性位点。在这项工作中,我们描述了一种替代方法,该方法使用合理的设计在一个小的金属伴侣蛋白支架中构建人工 PHM 模型。通过定点突变,我们构建了变体,提供了一个 HisMet 铜结合配体组,模拟 PHM 的 M 中心。结果表明,该模型准确地再现了 M 中心的化学和光谱性质,包括甲硫氨酸配位的细节,以及在 CO 和叠氮化物等内源性配体存在下 Cu(I)和 Cu(II)态的性质。模型的 Cu(II)形式被发色还原剂,'-二甲苯二胺 (DMPD) 还原的速率与 PHM M 中心的速率进行了比较,并且还探索了 Cu(I)形式与分子氧的反应化学,揭示了对分子氧的异常低反应性。这一发现强调了底物触发氧气反应性的重要性,并暗示 HisMet 配体组虽然是必需的,但本身不足以激活这些酶系统中的氧气。

相似文献

引用本文的文献

6
An intramolecular macrocyclase in plant ribosomal peptide biosynthesis.植物核糖体肽生物合成中的分子内大环化酶。
Nat Chem Biol. 2024 Apr;20(4):530-540. doi: 10.1038/s41589-024-01552-1. Epub 2024 Feb 14.

本文引用的文献

7
Peroxide Activation Regulated by Hydrogen Bonds within Artificial Cu Proteins.过氧化物通过人工 Cu 蛋白内氢键激活。
J Am Chem Soc. 2017 Dec 6;139(48):17289-17292. doi: 10.1021/jacs.7b10452. Epub 2017 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验